-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathCSStep.h
1054 lines (856 loc) · 35.9 KB
/
CSStep.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- CSStep.h - Constraint Solver Steps -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c SolverStep class and its related types,
// which is used by constraint solver to do iterative solving.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SEMA_CSSTEP_H
#define SWIFT_SEMA_CSSTEP_H
#include "swift/AST/Types.h"
#include "swift/Sema/Constraint.h"
#include "swift/Sema/ConstraintGraph.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
#include <optional>
using namespace llvm;
namespace swift {
namespace constraints {
class SolverStep;
class ComponentStep;
/// Represents available states which every
/// given step could be in during its lifetime.
enum class StepState { Setup, Ready, Running, Suspended, Done };
/// Represents result of the step execution,
/// and can only be constructed by `SolverStep`.
struct StepResult {
using Kind = ConstraintSystem::SolutionKind;
friend class SolverStep;
private:
Kind ResultKind;
SmallVector<std::unique_ptr<SolverStep>, 4> NextSteps;
StepResult(Kind kind) : ResultKind(kind) {}
StepResult(Kind kind, std::unique_ptr<SolverStep> step) : ResultKind(kind) {
NextSteps.push_back(std::move(step));
}
StepResult(Kind kind, SmallVectorImpl<std::unique_ptr<SolverStep>> &followup)
: ResultKind(kind), NextSteps(std::move(followup)) {}
public:
StepResult() = delete;
Kind getKind() const { return ResultKind; }
void transfer(SmallVectorImpl<std::unique_ptr<SolverStep>> &workList) {
workList.reserve(NextSteps.size());
for (auto &step : NextSteps)
workList.push_back(std::move(step));
}
private:
static StepResult success() { return StepResult(Kind::Solved); }
static StepResult failure() { return StepResult(Kind::Error); }
static StepResult unsolved(std::unique_ptr<SolverStep> singleStep) {
return StepResult(Kind::Unsolved, std::move(singleStep));
}
static StepResult
unsolved(SmallVectorImpl<std::unique_ptr<SolverStep>> &followup) {
return StepResult(Kind::Unsolved, followup);
}
};
/// Represents a single independently solvable part of
/// the constraint system. And is a base class for all
/// different types of steps there are.
class SolverStep {
friend class ConstraintSystem;
protected:
ConstraintSystem &CS;
StepState State = StepState::Setup;
/// Once step is complete this is a container to hold finalized solutions.
SmallVectorImpl<Solution> &Solutions;
public:
explicit SolverStep(ConstraintSystem &cs,
SmallVectorImpl<Solution> &solutions)
: CS(cs), Solutions(solutions) {}
virtual ~SolverStep() {}
/// \returns The current state of this step.
StepState getState() const { return State; }
/// Run preliminary setup (if needed) right
/// before taking this step for the first time.
virtual void setup() {}
/// Try to move solver forward by simplifying constraints if possible.
/// Such simplification might lead to either producing a solution, or
/// creating a set of "follow-up" more granular steps to execute.
///
/// \param prevFailed Indicate whether previous step
/// has failed (returned StepResult::Kind = Error),
/// this is useful to propagate failures when
/// unsolved steps are re-taken.
///
/// \returns status and any follow-up steps to take before considering
/// this step solved or failed.
virtual StepResult take(bool prevFailed) = 0;
/// Try to resume previously suspended step.
///
/// This happens after "follow-up" steps are done
/// and all of the required information should be
/// available to re-take this step.
///
/// \param prevFailed Indicate whether previous step
/// has failed (returned StepResult::Kind = Error),
/// this is useful to propagate failures when
/// unsolved steps are re-taken.
///
/// \returns status and any follow-up steps to take before considering
/// this step solved or failed.
virtual StepResult resume(bool prevFailed) = 0;
virtual void print(llvm::raw_ostream &Out) = 0;
protected:
/// Transition this step into one of the available states.
///
/// This is primarily driven by execution of the step itself and
/// the solver, while it executes the work list.
///
/// \param newState The new state this step should be in.
void transitionTo(StepState newState) {
#ifndef NDEBUG
// Make sure that ordering of the state transitions is correct,
// because `setup -> ready -> running [-> suspended]* -> done`
// is the only reasonable state transition path.
switch (State) {
case StepState::Setup:
assert(newState == StepState::Ready);
break;
case StepState::Ready:
assert(newState == StepState::Running);
break;
case StepState::Running:
assert(newState == StepState::Suspended || newState == StepState::Done);
break;
case StepState::Suspended:
assert(newState == StepState::Running);
break;
case StepState::Done:
llvm_unreachable("step is already done.");
}
#endif
State = newState;
}
StepResult done(bool isSuccess) {
transitionTo(StepState::Done);
return isSuccess ? StepResult::success() : StepResult::failure();
}
StepResult replaceWith(std::unique_ptr<SolverStep> replacement) {
transitionTo(StepState::Done);
return StepResult(StepResult::Kind::Solved, std::move(replacement));
}
StepResult suspend(std::unique_ptr<SolverStep> followup) {
transitionTo(StepState::Suspended);
return StepResult::unsolved(std::move(followup));
}
StepResult suspend(SmallVectorImpl<std::unique_ptr<SolverStep>> &followup) {
transitionTo(StepState::Suspended);
return StepResult::unsolved(followup);
}
void recordDisjunctionChoice(ConstraintLocator *disjunctionLocator,
unsigned index) const {
CS.recordDisjunctionChoice(disjunctionLocator, index);
}
Score getCurrentScore() const { return CS.CurrentScore; }
std::optional<Score> getBestScore() const {
return CS.solverState->BestScore;
}
void filterSolutions(SmallVectorImpl<Solution> &solutions, bool minimize) {
CS.filterSolutions(solutions, minimize);
}
llvm::raw_ostream &getDebugLogger(bool indent = true) const {
auto &log = llvm::errs();
return indent ? log.indent(CS.solverState->getCurrentIndent()) : log;
}
};
/// `SplitterStep` is responsible for running connected components
/// algorithm to determine how many independent sub-systems there are.
/// Once that's done it would create one `ComponentStep` per such
/// sub-system, and move to try to solve each and then merge partial
/// solutions produced by components into complete solution(s).
class SplitterStep final : public SolverStep {
// Set of constraints associated with each component, after
// component steps are complete, all of the constraints are
// returned back to the work-list in their original order.
SmallVector<ConstraintList, 4> Components;
// Partial solutions associated with given step, each element
// of the array presents a disjoint component (or follow-up step)
// that current step has been split into.
std::unique_ptr<SmallVector<Solution, 4>[]> PartialSolutions = nullptr;
SmallVector<Constraint *, 4> OrphanedConstraints;
/// Whether to include the partial results of this component in the final
/// merged results.
SmallVector<bool, 4> IncludeInMergedResults;
public:
SplitterStep(ConstraintSystem &cs, SmallVectorImpl<Solution> &solutions)
: SolverStep(cs, solutions) {}
StepResult take(bool prevFailed) override;
StepResult resume(bool prevFailed) override;
void print(llvm::raw_ostream &Out) override {
Out << "SplitterStep with #" << Components.size() << " components\n";
}
private:
/// If current step needs follow-up steps to get completely solved,
/// let's compute them using connected components algorithm.
void computeFollowupSteps(
SmallVectorImpl<std::unique_ptr<SolverStep>> &steps);
/// Once all of the follow-up steps are complete, let's try
/// to merge resulting solutions together, to form final solution(s)
/// for this step.
///
/// \returns true if there are any solutions, false otherwise.
bool mergePartialSolutions() const;
};
/// `DependentComponentSplitterStep` is responsible for composing the partial
/// solutions from other components (on which this component depends) into
/// the inputs based on which we can solve a particular component.
class DependentComponentSplitterStep final : public SolverStep {
/// Constraints "in scope" of this step.
ConstraintList *Constraints;
/// Index into the parent splitter step.
unsigned Index;
/// The component that has dependencies.
ConstraintGraph::Component Component;
/// Array containing all of the partial solutions for the parent split.
MutableArrayRef<SmallVector<Solution, 4>> AllPartialSolutions;
/// The solutions computed the \c ComponentSteps created for each partial
/// solution combinations. Will be merged into the final \c Solutions vector
/// in \c resume.
std::vector<std::unique_ptr<SmallVector<Solution, 2>>> ContextualSolutions;
/// Take all of the constraints in this component and put them into
/// \c Constraints.
void injectConstraints() {
for (auto constraint : Component.getConstraints()) {
Constraints->erase(constraint);
Constraints->push_back(constraint);
}
}
public:
DependentComponentSplitterStep(
ConstraintSystem &cs,
ConstraintList *constraints,
unsigned index,
ConstraintGraph::Component &&component,
MutableArrayRef<SmallVector<Solution, 4>> allPartialSolutions)
: SolverStep(cs, allPartialSolutions[index]), Constraints(constraints),
Index(index), Component(std::move(component)),
AllPartialSolutions(allPartialSolutions) {
assert(!Component.getDependencies().empty() && "Should use ComponentStep");
injectConstraints();
}
StepResult take(bool prevFailed) override;
StepResult resume(bool prevFailed) override;
void print(llvm::raw_ostream &Out) override;
};
/// `ComponentStep` represents a set of type variables and related
/// constraints which could be solved independently. It's further
/// simplified into "binding" steps which attempt type variable and
/// disjunction choices.
class ComponentStep final : public SolverStep {
class Scope {
ConstraintSystem &CS;
std::optional<ConstraintSystem::SolverScope> SolverScope;
SetVector<TypeVariableType *> TypeVars;
unsigned prevPartialSolutionFixes = 0;
// The component this scope is associated with.
ComponentStep &Component;
Scope(const Scope &) = delete;
Scope &operator=(const Scope &) = delete;
public:
explicit Scope(ComponentStep &component);
~Scope() {
SolverScope.reset(); // rewind back all of the changes.
CS.solverState->numPartialSolutionFixes = prevPartialSolutionFixes;
// return all of the saved type variables back to the system.
CS.TypeVariables = std::move(TypeVars);
// return all of the saved constraints back to the component.
auto &constraints = *Component.Constraints;
constraints.splice(constraints.end(), CS.InactiveConstraints);
}
};
/// The position of the component in the set of
/// components produced by "split" step.
unsigned Index;
/// Indicates whether this is only component produced
/// by "split" step. This information opens optimization
/// opportunity, because if there are no other components,
/// constraint system doesn't have to pruned from
/// unrelated type variables and their constraints.
bool IsSingle;
/// The score associated with constraint system before
/// the component step is taken.
Score OriginalScore;
/// The original best score computed before any of the
/// component steps belonging to the same "split" are taken.
std::optional<Score> OriginalBestScore;
/// If this step depends on other smaller steps to be solved first
/// we need to keep active scope until all of the work is done.
std::optional<Scope> ComponentScope;
/// Type variables and constraints "in scope" of this step.
TinyPtrVector<TypeVariableType *> TypeVars;
/// Constraints "in scope" of this step.
ConstraintList *Constraints;
/// The set of partial solutions that should be composed before evaluating
/// this component.
SmallVector<const Solution *, 2> DependsOnPartialSolutions;
/// Constraint which doesn't have any free type variables associated
/// with it, which makes it disconnected in the graph.
Constraint *OrphanedConstraint = nullptr;
public:
/// Create a single component step.
ComponentStep(ConstraintSystem &cs, unsigned index,
ConstraintList *constraints,
SmallVectorImpl<Solution> &solutions)
: SolverStep(cs, solutions), Index(index), IsSingle(true),
OriginalScore(getCurrentScore()), OriginalBestScore(getBestScore()),
Constraints(constraints) {}
/// Create a component step from a constraint graph component.
ComponentStep(ConstraintSystem &cs, unsigned index,
ConstraintList *constraints,
ConstraintGraph::Component &&component,
SmallVectorImpl<Solution> &solutions)
: SolverStep(cs, solutions), Index(index), IsSingle(false),
OriginalScore(getCurrentScore()), OriginalBestScore(getBestScore()),
Constraints(constraints) {
if (component.isOrphaned()) {
assert(component.getConstraints().size() == 1);
OrphanedConstraint = component.getConstraints().front();
} else {
assert(component.typeVars.size() > 0);
}
TypeVars = std::move(component.typeVars);
for (auto constraint : component.getConstraints()) {
constraints->erase(constraint);
Constraints->push_back(constraint);
}
assert(component.getDependencies().empty());
}
/// Create a component step that composes existing partial solutions before
/// solving constraints.
ComponentStep(
ConstraintSystem &cs, unsigned index,
ConstraintList *constraints,
const ConstraintGraph::Component &component,
llvm::SmallVectorImpl<const Solution *> &&dependsOnPartialSolutions,
SmallVectorImpl<Solution> &solutions)
: SolverStep(cs, solutions), Index(index), IsSingle(false),
OriginalScore(getCurrentScore()), OriginalBestScore(getBestScore()),
Constraints(constraints),
DependsOnPartialSolutions(std::move(dependsOnPartialSolutions)) {
TypeVars = component.typeVars;
assert(DependsOnPartialSolutions.size() ==
component.getDependencies().size());
for (auto constraint : component.getConstraints()) {
constraints->erase(constraint);
Constraints->push_back(constraint);
}
}
StepResult take(bool prevFailed) override;
StepResult resume(bool prevFailed) override { return finalize(!prevFailed); }
void print(llvm::raw_ostream &Out) override {
Out << "ComponentStep with at #" << Index << '\n';
}
private:
void setupScope() {
// If this is a single component, there is no need
// to preliminary modify constraint system or log anything.
if (IsSingle)
return;
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(solving component #" << Index << '\n';
}
ComponentScope.emplace(*this);
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "Type variables in scope = "
<< "[";
auto typeVars = CS.getTypeVariables();
PrintOptions PO;
PO.PrintTypesForDebugging = true;
interleave(typeVars, [&](TypeVariableType *typeVar) {
Type(typeVar).print(log, PO);
},
[&] {
log << ", ";
});
log << "]" << '\n';
}
// If this component has orphaned constraint attached,
// let's return it to the graph.
CS.CG.setOrphanedConstraint(OrphanedConstraint);
}
/// Finalize current component by either cleanup if sub-tasks
/// have failed, or solution generation and minimization.
StepResult finalize(bool isSuccess);
};
template <typename P> class BindingStep : public SolverStep {
protected:
using Scope = ConstraintSystem::SolverScope;
P Producer;
/// Indicates whether any of the attempted bindings
/// produced a solution.
bool AnySolved = false;
/// Active binding (scope + choice) which is currently
/// being attempted, helps to rewind state of the
/// constraint system back to original before attempting
/// next binding, if any.
std::optional<std::pair<Scope, typename P::Element>>
ActiveChoice;
BindingStep(ConstraintSystem &cs, P producer,
SmallVectorImpl<Solution> &solutions)
: SolverStep(cs, solutions), Producer(std::move(producer)) {}
public:
StepResult take(bool prevFailed) override {
// Before attempting the next choice, let's check whether the constraint
// system is too complex already.
if (CS.isTooComplex(Solutions))
return done(/*isSuccess=*/false);
while (auto choice = Producer()) {
if (shouldSkip(*choice))
continue;
if (shouldStopAt(*choice))
break;
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(attempting ";
choice->print(log, &CS.getASTContext().SourceMgr, CS.solverState->getCurrentIndent() + 2);
log << '\n';
}
{
Scope scope(CS);
if (attempt(*choice)) {
ActiveChoice.emplace(std::move(scope), *choice);
if (CS.isDebugMode()) {
CS.solverState->Trail.dumpActiveScopeChanges(
llvm::errs(), ActiveChoice->first.startTrailSteps,
CS.solverState->getCurrentIndent());
}
return suspend(std::make_unique<SplitterStep>(CS, Solutions));
}
}
if (CS.isDebugMode())
getDebugLogger() << ")\n";
// If this binding didn't match, let's check if we've attempted
// enough bindings to stop, because some producers might need
// to compute next step of bindings to try, which we'd want to avoid.
if (shouldStopAfter(*choice))
break;
}
return done(/*isSuccess=*/AnySolved);
}
protected:
/// Attempt to apply given binding choice to constraint system.
/// This action is going to establish "active choice" of this step
/// to point to a given choice.
///
/// \param choice The choice to attempt.
///
/// \return true if the choice has been accepted and system can be
/// simplified further, false otherwise.
virtual bool attempt(const typename P::Element &choice) = 0;
/// Check whether attempting this choice could be avoided,
/// which could speed-up solving.
virtual bool shouldSkip(const typename P::Element &choice) const = 0;
/// Check whether attempting binding choices should be stopped,
/// because optimal solution has already been found.
virtual bool shouldStopAt(const typename P::Element &choice) const = 0;
/// Check whether attempting binding choices should be stopped,
/// after current choice has been attempted, because optimal
/// solution has already been found,
virtual bool shouldStopAfter(const typename P::Element &choice) const {
return false;
}
bool needsToComputeNext() const { return Producer.needsToComputeNext(); }
ConstraintLocator *getLocator() const { return Producer.getLocator(); }
};
class TypeVariableStep final : public BindingStep<TypeVarBindingProducer> {
using BindingContainer = inference::BindingSet;
using Binding = inference::PotentialBinding;
TypeVariableType *TypeVar;
/// Indicates whether source of one of the previously
/// attempted bindings was a literal constraint. This
/// is useful for a performance optimization to stop
/// attempting other bindings in certain conditions.
bool SawFirstLiteralConstraint = false;
public:
TypeVariableStep(BindingContainer &bindings,
SmallVectorImpl<Solution> &solutions)
: BindingStep(bindings.getConstraintSystem(), {bindings}, solutions),
TypeVar(bindings.getTypeVariable()) {}
void setup() override;
StepResult resume(bool prevFailed) override;
void print(llvm::raw_ostream &Out) override {
PrintOptions PO;
PO.PrintTypesForDebugging = true;
Out << "TypeVariableStep for " << TypeVar->getString(PO) << '\n';
}
protected:
bool attempt(const TypeVariableBinding &choice) override;
bool shouldSkip(const TypeVariableBinding &choice) const override {
// Let's always attempt types inferred from "defaultable" constraints
// in diagnostic mode. This allows the solver to attempt i.e. `Any`
// for collection literals and produce better diagnostics for for-in
// statements like `for (x, y, z) in [] { ... }` when pattern type
// could not be inferred.
if (CS.shouldAttemptFixes())
return false;
// If this is a defaultable binding and we have found solutions,
// don't explore the default binding.
return AnySolved && choice.isDefaultable();
}
/// Check whether attempting type variable binding choices should
/// be stopped, because optimal solution has already been found.
bool shouldStopAt(const TypeVariableBinding &choice) const override {
// Let's always attempt default types inferred from literals in diagnostic
// mode because that could lead to better diagnostics if the problem is
// contextual like argument/parameter conversion or collection element
// mismatch.
if (CS.shouldAttemptFixes())
return false;
// If we were able to solve this without considering
// default literals, don't bother looking at default literals.
return AnySolved && choice.hasDefaultedProtocol() &&
!SawFirstLiteralConstraint;
}
bool shouldStopAfter(const TypeVariableBinding &choice) const override {
// Let's always attempt additional bindings in diagnostic mode, as that
// could lead to better diagnostic for e.g trying the unwrapped type.
if (CS.shouldAttemptFixes())
return false;
// If there has been at least one solution so far
// at a current batch of bindings is done it's a
// success because each new batch would be less
// and less precise.
return AnySolved && needsToComputeNext();
}
};
class DisjunctionStep final : public BindingStep<DisjunctionChoiceProducer> {
Constraint *Disjunction;
SmallVector<Constraint *, 4> DisabledChoices;
std::optional<Score> BestNonGenericScore;
std::optional<std::pair<Constraint *, Score>> LastSolvedChoice;
public:
DisjunctionStep(ConstraintSystem &cs, Constraint *disjunction,
SmallVectorImpl<Solution> &solutions)
: BindingStep(cs, {cs, disjunction}, solutions), Disjunction(disjunction) {
assert(Disjunction->getKind() == ConstraintKind::Disjunction);
pruneOverloadSet(Disjunction);
++cs.solverState->NumDisjunctions;
}
~DisjunctionStep() override {
// Rewind back any changes left after attempting last choice.
ActiveChoice.reset();
// Re-enable previously disabled overload choices.
for (auto *choice : DisabledChoices)
choice->setEnabled();
}
StepResult resume(bool prevFailed) override;
void print(llvm::raw_ostream &Out) override {
Out << "DisjunctionStep for ";
Disjunction->print(Out, &CS.getASTContext().SourceMgr,
CS.solverState->getCurrentIndent());
Out << '\n';
}
private:
bool shouldSkip(const DisjunctionChoice &choice) const override;
/// Whether we should short-circuit a disjunction that already has a
/// solution when we encounter the given choice.
///
/// FIXME: This is performance hack, which should go away.
///
/// \params choice The disjunction choice we are about to attempt.
///
/// \returns true if disjunction step should be considered complete,
/// false otherwise.
bool shouldStopAt(const DisjunctionChoice &choice) const override;
bool shortCircuitDisjunctionAt(Constraint *currentChoice,
Constraint *lastSuccessfulChoice) const;
bool shouldSkipGenericOperators() const {
if (!BestNonGenericScore)
return false;
// Let's skip generic overload choices only in case if
// non-generic score indicates that there were no forced
// unwrappings of optional(s), no unavailable overload
// choices present in the solution, no fixes required,
// and there are no non-trivial user or function conversions.
auto &score = BestNonGenericScore->Data;
return (score[SK_ForceUnchecked] == 0 && score[SK_Unavailable] == 0 &&
score[SK_Fix] == 0 && score[SK_UserConversion] == 0 &&
score[SK_FunctionConversion] == 0);
}
/// Attempt to apply given disjunction choice to constraint system.
/// This action is going to establish "active choice" of this disjunction
/// to point to a given choice.
///
/// \param choice The choice to attempt.
///
/// \return true if the choice has been accepted and system can be
/// simplified further, false otherwise.
bool attempt(const DisjunctionChoice &choice) override;
// Check if selected disjunction has a representative
// this might happen when there are multiple binary operators
// chained together. If so, disable choices which differ
// from currently selected representative.
void pruneOverloadSet(Constraint *disjunction) {
auto *choice = disjunction->getNestedConstraints().front();
if (choice->getKind() != ConstraintKind::BindOverload)
return;
auto *typeVar = choice->getFirstType()->getAs<TypeVariableType>();
if (!typeVar)
return;
auto *repr = typeVar->getImpl().getRepresentative(nullptr);
if (!repr || repr == typeVar)
return;
for (auto overload : CS.getResolvedOverloads()) {
auto resolved = overload.second;
if (!resolved.boundType->isEqual(repr))
continue;
auto &representative = resolved.choice;
if (!representative.isDecl())
return;
// Disable all of the overload choices which are different from
// the one which is currently picked for representative.
for (auto *constraint : disjunction->getNestedConstraints()) {
auto choice = constraint->getOverloadChoice();
if (!choice.isDecl() || choice.getDecl() == representative.getDecl())
continue;
constraint->setDisabled();
DisabledChoices.push_back(constraint);
}
break;
}
};
// Figure out which of the solutions has the smallest score.
static std::optional<Score>
getBestScore(SmallVectorImpl<Solution> &solutions) {
if (solutions.empty())
return std::nullopt;
Score bestScore = solutions.front().getFixedScore();
if (solutions.size() == 1)
return bestScore;
for (unsigned i = 1, n = solutions.size(); i != n; ++i) {
auto &score = solutions[i].getFixedScore();
if (score < bestScore)
bestScore = score;
}
return bestScore;
}
};
/// Retrieves the DeclContext that a conjunction should be solved within.
static DeclContext *getDeclContextForConjunction(ConstraintLocator *loc) {
// Closures introduce a new DeclContext that needs switching into.
auto anchor = loc->getAnchor();
if (loc->directlyAt<ClosureExpr>())
return castToExpr<ClosureExpr>(anchor);
// SingleValueStmtExprs need to switch to their enclosing context. This
// is unfortunately necessary since they can be present in single-expression
// closures, which don't have their DeclContext established since they're
// solved together with the rest of the system.
if (loc->isForSingleValueStmtConjunction())
return castToExpr<SingleValueStmtExpr>(anchor)->getDeclContext();
// Do the same for TapExprs.
if (loc->directlyAt<TapExpr>())
return castToExpr<TapExpr>(anchor)->getVar()->getDeclContext();
return nullptr;
}
class ConjunctionStep : public BindingStep<ConjunctionElementProducer> {
/// Snapshot of the constraint system before conjunction.
class SolverSnapshot {
ConstraintSystem &CS;
/// The conjunction this snapshot belongs to.
Constraint *Conjunction;
std::optional<llvm::SaveAndRestore<DeclContext *>> DC = std::nullopt;
llvm::SetVector<TypeVariableType *> TypeVars;
ConstraintList Constraints;
/// If this conjunction has to be solved in isolation,
/// this scope would be initialized once all of the
/// elements are successfully solved to continue solving
/// along the current path as-if there was no conjunction.
std::optional<Scope> IsolationScope;
public:
SolverSnapshot(ConstraintSystem &cs, Constraint *conjunction)
: CS(cs), Conjunction(conjunction),
TypeVars(std::move(cs.TypeVariables)) {
auto *locator = Conjunction->getLocator();
// If we need to switch into a new DeclContext for the conjunction, do so.
if (auto *newDC = getDeclContextForConjunction(locator))
DC.emplace(CS.DC, newDC);
auto &CG = CS.getConstraintGraph();
// Remove all of the current inactive constraints.
Constraints.splice(Constraints.end(), CS.InactiveConstraints);
// Clear constraint graph.
for (auto &constraint : Constraints)
CG.removeConstraint(&constraint);
}
void setupOuterContext(Solution solution) {
// Re-add type variables and constraints back
// to the constraint system.
restore();
// Establish isolation scope so that conjunction solution
// and follow-up steps could be rolled back.
IsolationScope.emplace(CS);
// Apply solution inferred for the conjunction.
replaySolution(solution);
// Add constraints to the graph after solution
// has been applied to make sure that all type
// information is available to incremental inference.
for (auto &constraint : CS.InactiveConstraints)
CS.CG.addConstraint(&constraint);
}
bool isScoped() const { return bool(IsolationScope); }
~SolverSnapshot() {
if (!IsolationScope)
restore();
IsolationScope.reset();
// Re-add all of the constraint to the constraint
// graph after scope has been rolled back, to make
// make sure the original (before conjunction)
// state is completely restored.
updateConstraintGraph();
}
private:
void restore() {
DC.reset();
CS.TypeVariables = std::move(TypeVars);
CS.InactiveConstraints.splice(CS.InactiveConstraints.end(), Constraints);
}
void updateConstraintGraph() {
auto &CG = CS.getConstraintGraph();
for (auto &constraint : CS.InactiveConstraints)
CG.addConstraint(&constraint);
}
void replaySolution(const Solution &solution);
};
/// Best solution solver reached so far.
std::optional<Score> BestScore;
/// The number of constraint solver scopes already explored
/// before attempting this conjunction.
llvm::SaveAndRestore<unsigned> OuterNumSolverScopes;
/// The number of trail steps already recorded before attempting
/// this conjunction.
llvm::SaveAndRestore<unsigned> OuterNumTrailSteps;
/// The number of milliseconds until outer constraint system
/// is considered "too complex" if timer is enabled.
std::optional<std::pair<ExpressionTimer::AnchorType, unsigned>>
OuterTimeRemaining = std::nullopt;
/// Conjunction constraint associated with this step.
Constraint *Conjunction;
/// Indicates that one of the elements failed inference.
bool HadFailure = false;
/// If conjunction has to be solved in isolation, this
/// variable would capture the snapshot of the constraint
/// system step before conjunction step.
std::optional<SolverSnapshot> Snapshot;
/// A set of previously deduced solutions. This is used upon
/// successful solution of an isolated conjunction to introduce
/// all of the inferred information back into the outer context.
SmallVectorImpl<Solution> &OuterSolutions;
/// Solutions produced while attempting elements of an isolated conjunction.
///
/// Note that this is what `BindingStep` is initialized with
/// in isolated mode.
SmallVector<Solution, 4> IsolatedSolutions;
public:
ConjunctionStep(ConstraintSystem &cs, Constraint *conjunction,
SmallVectorImpl<Solution> &solutions)
: BindingStep(cs, {cs, conjunction},
conjunction->isIsolated() ? IsolatedSolutions : solutions),
BestScore(getBestScore()),
OuterNumSolverScopes(cs.NumSolverScopes, 0),
OuterNumTrailSteps(cs.NumTrailSteps, 0),
Conjunction(conjunction),
OuterSolutions(solutions) {
assert(conjunction->getKind() == ConstraintKind::Conjunction);
// Make a snapshot of the constraint system state before conjunction.
if (conjunction->isIsolated())
Snapshot.emplace(cs, conjunction);
if (cs.Timer) {
auto remainingTime = cs.Timer->getRemainingProcessTimeInSeconds();
OuterTimeRemaining.emplace(cs.Timer->getAnchor(), remainingTime);
}
}
~ConjunctionStep() override {
assert(!bool(ActiveChoice));
// Return all of the type variables and constraints back.
Snapshot.reset();
// Restore best score only if conjunction fails because
// successful outcome should keep a score set by `restoreOuterState`.
if (HadFailure)
restoreBestScore();
if (OuterTimeRemaining) {
auto anchor = OuterTimeRemaining->first;
auto remainingTime = OuterTimeRemaining->second;
CS.Timer.emplace(anchor, CS, remainingTime);
}
}
StepResult resume(bool prevFailed) override;
void print(llvm::raw_ostream &Out) override {
Out << "ConjunctionStep for ";
Conjunction->print(Out, &CS.getASTContext().SourceMgr,
CS.solverState->getCurrentIndent());
Out << '\n';
}
protected:
bool attempt(const ConjunctionElement &element) override;