-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathAssociatedTypeInference.cpp
4575 lines (3815 loc) · 165 KB
/
AssociatedTypeInference.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- AssociatedTypeInference.cpp - Associated Type Inference ---000----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements type witness lookup and associated type inference.
//
// There are three entry points into the code here, all via request evaluation:
//
// - TypeWitnessRequest resolves a type witness in a normal conformance.
// - First, we perform a qualified lookup into the conforming type to find a
// member type with the same name as the associated type.
// - If the lookup succeeds, we record the type witness.
// - If the lookup fails, we attempt to resolve all type witnesses.
//
// - ResolveTypeWitnessesRequest resolves all type witnesses of a normal
// conformance.
// - First, we attempt to resolve each associated type via lookup.
// - For any witnesses still unresolved, we perform associated type inference.
//
// - AssociatedConformanceRequest resolves an associated conformance of a
// normal conformance. This computes the substituted subject type and performs
// a global conformance lookup.
//
//===----------------------------------------------------------------------===//
#include "TypeCheckProtocol.h"
#include "DerivedConformances.h"
#include "TypeAccessScopeChecker.h"
#include "TypeChecker.h"
#include "TypeCheckAvailability.h"
#include "TypeCheckType.h"
#include "swift/AST/AvailabilityInference.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeMatcher.h"
#include "swift/AST/Types.h"
#include "swift/AST/UnsafeUse.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Statistic.h"
#include "swift/ClangImporter/ClangModule.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#define DEBUG_TYPE "Associated type inference"
#include "llvm/Support/Debug.h"
STATISTIC(NumSolutionStates, "# of solution states visited");
STATISTIC(NumSolutionStatesFailedCheck,
"# of solution states that failed constraints check");
STATISTIC(NumConstrainedExtensionChecks,
"# of constrained extension checks");
STATISTIC(NumConstrainedExtensionChecksFailed,
"# of constrained extension checks failed");
STATISTIC(NumDuplicateSolutionStates,
"# of duplicate solution states ");
using namespace swift;
namespace {
/// Describes the result of checking a type witness.
///
/// This class evaluates true if an error occurred.
class CheckTypeWitnessResult {
public:
enum Kind {
Success,
/// Type witness contains an error type.
Error,
/// Type witness does not satisfy a conformance requirement on
/// the associated type.
Conformance,
/// Type witness does not satisfy a superclass requirement on
/// the associated type.
Superclass,
/// Type witness does not satisfy a layout requirement on
/// the associated type.
Layout
} kind;
private:
Type reqt;
CheckTypeWitnessResult() : kind(Success) {}
CheckTypeWitnessResult(Kind kind, Type reqt)
: kind(kind), reqt(reqt) {}
public:
static CheckTypeWitnessResult forSuccess() {
return CheckTypeWitnessResult(Success, Type());
}
static CheckTypeWitnessResult forError() {
return CheckTypeWitnessResult(Error, Type());
}
static CheckTypeWitnessResult forConformance(ProtocolDecl *proto) {
auto reqt = proto->getDeclaredInterfaceType();
return CheckTypeWitnessResult(Conformance, reqt);
}
static CheckTypeWitnessResult forSuperclass(Type reqt) {
assert(reqt->getClassOrBoundGenericClass());
return CheckTypeWitnessResult(Superclass, reqt);
}
static CheckTypeWitnessResult forLayout(Type reqt) {
return CheckTypeWitnessResult(Layout, reqt);
}
Kind getKind() const { return kind; }
Type getRequirement() const { return reqt; }
explicit operator bool() const { return kind != Success; }
};
/// Checks a potential witness for an associated type A against the "local"
/// requirements of the type parameter Self.[P]A. We call this to check
/// type witnesses found by name lookup, as well as candidate witnesses during
/// inference.
///
/// This does not completely check the witness; we check the entire requirement
/// signature at the end. However, rejecting witnesses that are definitely
/// invalid here can cut down the search space.
static CheckTypeWitnessResult
checkTypeWitness(Type type, AssociatedTypeDecl *assocType,
const NormalProtocolConformance *Conf) {
auto &ctx = assocType->getASTContext();
if (type->hasError())
return CheckTypeWitnessResult::forError();
if (type->isTypeParameter())
return CheckTypeWitnessResult::forSuccess();
const auto proto = Conf->getProtocol();
const auto sig = proto->getGenericSignature();
// FIXME: The RequirementMachine will assert on re-entrant construction.
// We should find a more principled way of breaking this cycle.
if (ctx.isRecursivelyConstructingRequirementMachine(sig.getCanonicalSignature()) ||
ctx.isRecursivelyConstructingRequirementMachine(proto) ||
proto->isComputingRequirementSignature())
return CheckTypeWitnessResult::forError();
const auto depTy = DependentMemberType::get(proto->getSelfInterfaceType(),
assocType);
if (auto superclass = sig->getSuperclassBound(depTy)) {
// We only check that the type's superclass declaration is correct.
// If the superclass bound is generic, we may not have resolved all of
// the type witnesses that appear in generic arguments yet, and doing so
// here might run into a request cycle.
auto superclassDecl = superclass->getClassOrBoundGenericClass();
assert(superclassDecl);
// Fish a class declaration out of the type witness.
ClassDecl *classDecl = nullptr;
if (auto archetype = type->getAs<ArchetypeType>()) {
if (auto superclassType = archetype->getSuperclass())
classDecl = superclassType->getClassOrBoundGenericClass();
} else if (type->isObjCExistentialType()) {
// For self-conforming Objective-C existentials, the exact check is
// implemented in TypeBase::isExactSuperclassOf(). Here, we just always
// look through into a superclass of a composition.
if (auto superclassType = type->getSuperclass())
classDecl = superclassType->getClassOrBoundGenericClass();
} else {
classDecl = type->getClassOrBoundGenericClass();
}
if (!classDecl || !superclassDecl->isSuperclassOf(classDecl))
return CheckTypeWitnessResult::forSuperclass(superclass);
}
// Check protocol conformances. We don't check conditional requirements here.
for (const auto reqProto : sig->getRequiredProtocols(depTy)) {
if (lookupConformance(
type, reqProto,
/*allowMissing=*/reqProto->isSpecificProtocol(
KnownProtocolKind::Sendable))
.isInvalid())
return CheckTypeWitnessResult::forConformance(reqProto);
}
// We can completely check an AnyObject layout constraint.
if (sig->requiresClass(depTy) &&
!type->satisfiesClassConstraint()) {
return CheckTypeWitnessResult::forLayout(ctx.getAnyObjectType());
}
// Success!
return CheckTypeWitnessResult::forSuccess();
}
}
static bool containsConcreteDependentMemberType(Type ty) {
return ty.findIf([](Type t) -> bool {
if (auto *dmt = t->getAs<DependentMemberType>())
return !dmt->isTypeParameter();
return false;
});
}
/// Determine whether this is the AsyncIteratorProtocol.Failure or
/// AsyncSequence.Failure associated type.
static bool isAsyncIteratorOrSequenceFailure(AssociatedTypeDecl *assocType) {
auto proto = assocType->getProtocol();
if (!proto->isSpecificProtocol(KnownProtocolKind::AsyncIteratorProtocol) &&
!proto->isSpecificProtocol(KnownProtocolKind::AsyncSequence))
return false;
return assocType->getName() == assocType->getASTContext().Id_Failure;
}
static void recordTypeWitness(NormalProtocolConformance *conformance,
AssociatedTypeDecl *assocType,
Type type,
TypeDecl *typeDecl) {
assert(!containsConcreteDependentMemberType(type));
// If we already recoded this type witness, there's nothing to do.
if (conformance->hasTypeWitness(assocType)) {
assert(conformance->getTypeWitnessUncached(assocType)
.getWitnessType()
->isEqual(type) &&
"Conflicting type witness deductions");
return;
}
assert(!type->hasArchetype() && "Got a contextual type here?");
auto *dc = conformance->getDeclContext();
auto *proto = conformance->getProtocol();
auto &ctx = dc->getASTContext();
// If there was no type declaration, synthesize one.
if (typeDecl == nullptr) {
Identifier name;
bool needsImplementsAttr;
if (isAsyncIteratorOrSequenceFailure(assocType)) {
// Use __<protocol>_<assocType> as the name, to keep it out of the
// way of other names.
llvm::SmallString<32> nameBuffer;
nameBuffer += "__";
nameBuffer += assocType->getProtocol()->getName().str();
nameBuffer += "_";
nameBuffer += assocType->getName().str();
name = ctx.getIdentifier(nameBuffer);
needsImplementsAttr = true;
} else {
// Declare a typealias with the same name as the associated type.
name = assocType->getName();
needsImplementsAttr = false;
}
auto aliasDecl = new (ctx) TypeAliasDecl(
SourceLoc(), SourceLoc(), name, SourceLoc(),
/*genericparams*/ nullptr, dc);
aliasDecl->setUnderlyingType(type);
aliasDecl->setImplicit();
aliasDecl->setSynthesized();
// If needed, add an @_implements(Protocol, Name) attribute.
if (needsImplementsAttr) {
auto attr = ImplementsAttr::create(
dc, assocType->getProtocol(), assocType->getName());
aliasDecl->getAttrs().add(attr);
}
// Inject the typealias into the nominal decl that conforms to the protocol.
auto nominal = dc->getSelfNominalTypeDecl();
auto requiredAccessScope = evaluateOrDefault(
ctx.evaluator, ConformanceAccessScopeRequest{dc, proto},
std::make_pair(AccessScope::getPublic(), false));
if (!ctx.isSwiftVersionAtLeast(5) &&
!dc->getParentModule()->isResilient()) {
// HACK: In pre-Swift-5, these typealiases were synthesized with the
// same access level as the conforming type, which might be more
// visible than the associated type witness. Preserve that behavior
// when the underlying type has sufficient access, but only in
// non-resilient modules.
std::optional<AccessScope> underlyingTypeScope =
TypeAccessScopeChecker::getAccessScope(type, dc,
/*usableFromInline*/ false);
assert(underlyingTypeScope.has_value() &&
"the type is already invalid and we shouldn't have gotten here");
AccessScope nominalAccessScope = nominal->getFormalAccessScope(dc);
std::optional<AccessScope> widestPossibleScope =
underlyingTypeScope->intersectWith(nominalAccessScope);
assert(widestPossibleScope.has_value() &&
"we found the nominal and the type witness, didn't we?");
requiredAccessScope.first = widestPossibleScope.value();
}
// An associated type witness can never be less than fileprivate, since
// it must always be at least as visible as the enclosing type.
AccessLevel requiredAccess =
std::max(requiredAccessScope.first.accessLevelForDiagnostics(),
AccessLevel::FilePrivate);
aliasDecl->setAccess(requiredAccess);
if (requiredAccessScope.second) {
auto *attr = new (ctx) UsableFromInlineAttr(/*implicit=*/true);
aliasDecl->getAttrs().add(attr);
}
// Construct the availability of the type witnesses based on the
// availability of the enclosing type and the associated type.
llvm::SmallVector<Decl *, 2> availabilitySources = {dc->getAsDecl()};
// Only constrain the availability of the typealias by the availability of
// the associated type if the associated type is less available than its
// protocol. This is required for source compatibility.
auto protoAvailability = AvailabilityInference::availableRange(proto);
auto assocTypeAvailability =
AvailabilityInference::availableRange(assocType);
if (protoAvailability.isSupersetOf(assocTypeAvailability)) {
availabilitySources.push_back(assocType);
}
AvailabilityInference::applyInferredAvailableAttrs(aliasDecl,
availabilitySources);
if (nominal == dc) {
nominal->addMember(aliasDecl);
} else {
auto ext = cast<ExtensionDecl>(dc);
ext->addMember(aliasDecl);
}
typeDecl = aliasDecl;
}
// Record the type witness.
conformance->setTypeWitness(assocType, type, typeDecl);
// Record type witnesses for any "overridden" associated types.
llvm::SetVector<AssociatedTypeDecl *> overriddenAssocTypes;
auto assocOverriddenDecls = assocType->getOverriddenDecls();
overriddenAssocTypes.insert(assocOverriddenDecls.begin(),
assocOverriddenDecls.end());
for (unsigned idx = 0; idx < overriddenAssocTypes.size(); ++idx) {
auto overridden = overriddenAssocTypes[idx];
// Note all of the newly-discovered overridden associated types.
auto overriddenDecls = overridden->getOverriddenDecls();
overriddenAssocTypes.insert(overriddenDecls.begin(), overriddenDecls.end());
// Find the conformance for this overridden protocol.
auto overriddenConformance =
lookupConformance(dc->getSelfInterfaceType(),
overridden->getProtocol(),
/*allowMissing=*/true);
if (overriddenConformance.isInvalid() ||
!overriddenConformance.isConcrete())
continue;
auto *overriddenRootConformance =
overriddenConformance.getConcrete()->getRootNormalConformance();
auto *overriddenRootConformanceDC =
overriddenRootConformance->getDeclContext();
// Don't record a type witness for an overridden associated type if the
// conformance to the corresponding inherited protocol
// - originates in a superclass
// - originates in a different module
// - and the current conformance have mismatching conditional requirements
// This can turn out badly in two ways:
// - Foremost, we must not *alter* conformances originating in superclasses
// or other modules. In other cases, we may hit an assertion in an attempt
// to overwrite an already recorded type witness with a different one.
// For example, the recorded type witness may be invalid, whereas the
// other one---valid, and vice versa.
// - If the current conformance is more restrictive, this type witness may
// not be a viable candidate for the overridden associated type.
if (overriddenRootConformanceDC->getSelfNominalTypeDecl() !=
dc->getSelfNominalTypeDecl())
continue;
if (overriddenRootConformanceDC->getParentModule() != dc->getParentModule())
continue;
auto currConformanceSig = dc->getGenericSignatureOfContext();
auto overriddenConformanceSig =
overriddenRootConformanceDC->getGenericSignatureOfContext();
if (currConformanceSig.getCanonicalSignature() !=
overriddenConformanceSig.getCanonicalSignature())
continue;
recordTypeWitness(overriddenRootConformance, overridden, type, typeDecl);
}
}
/// Determine whether this is the AsyncIteratorProtocol.Failure associated type.
static bool isAsyncIteratorProtocolFailure(AssociatedTypeDecl *assocType) {
auto proto = assocType->getProtocol();
if (!proto->isSpecificProtocol(KnownProtocolKind::AsyncIteratorProtocol))
return false;
return assocType->getName() == assocType->getASTContext().Id_Failure;
}
/// Determine whether this is the AsyncSequence.Failure associated type.
static bool isAsyncSequenceFailure(AssociatedTypeDecl *assocType) {
auto proto = assocType->getProtocol();
if (!proto->isSpecificProtocol(KnownProtocolKind::AsyncSequence))
return false;
return assocType->getName() == assocType->getASTContext().Id_Failure;
}
/// Attempt to resolve a type witness via member name lookup.
static ResolveWitnessResult resolveTypeWitnessViaLookup(
NormalProtocolConformance *conformance,
AssociatedTypeDecl *assocType) {
auto *dc = conformance->getDeclContext();
auto &ctx = dc->getASTContext();
// Conformances constructed by the ClangImporter should have explicit type
// witnesses already.
if (isa<ClangModuleUnit>(dc->getModuleScopeContext())) {
llvm::errs() << "Cannot look up associated type for imported conformance:\n";
conformance->getType().dump(llvm::errs());
assocType->dump(llvm::errs());
abort();
}
NLOptions subOptions = (NL_QualifiedDefault | NL_OnlyTypes |
NL_ProtocolMembers | NL_IncludeAttributeImplements);
// Look for a member type with the same name as the associated type.
SmallVector<ValueDecl *, 4> candidates;
dc->lookupQualified(dc->getSelfNominalTypeDecl(), assocType->createNameRef(),
dc->getSelfNominalTypeDecl()->getLoc(), subOptions,
candidates);
// If there aren't any candidates, we're done.
if (candidates.empty()) {
return ResolveWitnessResult::Missing;
}
// Determine which of the candidates is viable.
SmallVector<LookupTypeResultEntry, 2> viable;
SmallVector<std::pair<TypeDecl *, CheckTypeWitnessResult>, 2> nonViable;
SmallPtrSet<CanType, 4> viableTypes;
for (auto candidate : candidates) {
auto *typeDecl = cast<TypeDecl>(candidate);
// Skip other associated types.
if (isa<AssociatedTypeDecl>(typeDecl))
continue;
// If the name doesn't match and there's no appropriate @_implements
// attribute, skip this candidate.
//
// Also skip candidates in protocol extensions, because they tend to cause
// request cycles. We'll look at those during associated type inference.
if (assocType->getName() != typeDecl->getName() &&
!(witnessHasImplementsAttrForExactRequirement(typeDecl, assocType) &&
!typeDecl->getDeclContext()->getSelfProtocolDecl()))
continue;
// Prior to Swift 6, ignore a member named Failure when matching
// AsyncSequence.Failure. We'll infer it from the AsyncIterator.Failure
// instead.
if (isAsyncSequenceFailure(assocType) &&
!ctx.LangOpts.isSwiftVersionAtLeast(6) &&
assocType->getName() == typeDecl->getName())
continue;;
auto *genericDecl = cast<GenericTypeDecl>(typeDecl);
// If the declaration has generic parameters, it cannot witness an
// associated type.
if (genericDecl->isGeneric())
continue;
// Skip typealiases with an unbound generic type as their underlying type.
if (auto *typeAliasDecl = dyn_cast<TypeAliasDecl>(typeDecl))
if (typeAliasDecl->getDeclaredInterfaceType()->is<UnboundGenericType>())
continue;
// Skip dependent protocol typealiases.
//
// FIXME: This should not be necessary.
if (auto *typeAliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
if (isa<ProtocolDecl>(typeAliasDecl->getDeclContext()) &&
typeAliasDecl->getUnderlyingType()->getCanonicalType()
->hasTypeParameter()) {
continue;
}
}
// If the type comes from a constrained extension or has a 'where'
// clause, check those requirements now.
if (!TypeChecker::checkContextualRequirements(
genericDecl, dc->getSelfInterfaceType(), SourceLoc(),
dc->getGenericSignatureOfContext())) {
continue;
}
auto memberType = TypeChecker::substMemberTypeWithBase(
typeDecl, dc->getSelfInterfaceType());
// Type witnesses that resolve to constraint types are always
// existential types. This can only happen when the type witness
// is explicitly written with a type alias. The type alias itself
// is still a constraint type because it can be used as both a
// type witness and as a generic constraint.
//
// With SE-0335, using a type alias as both a type witness and a generic
// constraint will be disallowed in Swift 6, because existential types
// must be explicit, and a generic constraint isn't a valid type witness.
if (memberType->isConstraintType()) {
memberType = ExistentialType::get(memberType);
}
if (!viableTypes.insert(memberType->getCanonicalType()).second)
continue;
auto memberTypeInContext = dc->mapTypeIntoContext(memberType);
// Check this type against the protocol requirements.
if (auto checkResult =
checkTypeWitness(memberTypeInContext, assocType, conformance)) {
nonViable.push_back({typeDecl, checkResult});
} else {
viable.push_back({typeDecl, memberType, nullptr});
}
}
// If there are no viable witnesses, and all nonviable candidates came from
// protocol extensions, treat this as "missing".
if (viable.empty() &&
std::find_if(nonViable.begin(), nonViable.end(),
[](const std::pair<TypeDecl *, CheckTypeWitnessResult> &x) {
return x.first->getDeclContext()
->getSelfProtocolDecl() == nullptr;
}) == nonViable.end())
return ResolveWitnessResult::Missing;
// If there is a single viable candidate, form a substitution for it.
if (viable.size() == 1) {
auto interfaceType = viable.front().MemberType;
recordTypeWitness(conformance, assocType, interfaceType,
viable.front().Member);
return ResolveWitnessResult::Success;
}
// Record an error.
recordTypeWitness(conformance, assocType,
ErrorType::get(ctx), nullptr);
// If we had multiple viable types, diagnose the ambiguity.
if (!viable.empty()) {
ctx.addDelayedConformanceDiag(conformance, true,
[assocType, viable](NormalProtocolConformance *conformance) {
auto &diags = assocType->getASTContext().Diags;
diags.diagnose(assocType, diag::ambiguous_witnesses_type,
assocType->getName());
for (auto candidate : viable)
diags.diagnose(candidate.Member, diag::protocol_witness_type);
});
return ResolveWitnessResult::ExplicitFailed;
}
// Save the missing type witness for later diagnosis.
ctx.addDelayedMissingWitness(conformance, {assocType, {}});
// None of the candidates were viable.
ctx.addDelayedConformanceDiag(conformance, true,
[nonViable](NormalProtocolConformance *conformance) {
auto &diags = conformance->getDeclContext()->getASTContext().Diags;
for (auto candidate : nonViable) {
if (candidate.first->getDeclaredInterfaceType()->hasError() ||
candidate.second.getKind() == CheckTypeWitnessResult::Error)
continue;
switch (candidate.second.getKind()) {
case CheckTypeWitnessResult::Success:
case CheckTypeWitnessResult::Error:
llvm_unreachable("Should not end up here");
case CheckTypeWitnessResult::Conformance:
case CheckTypeWitnessResult::Layout:
diags.diagnose(
candidate.first,
diag::protocol_type_witness_unsatisfied_conformance,
candidate.first->getDeclaredInterfaceType(),
candidate.second.getRequirement());
break;
case CheckTypeWitnessResult::Superclass:
diags.diagnose(
candidate.first,
diag::protocol_type_witness_unsatisfied_superclass,
candidate.first->getDeclaredInterfaceType(),
candidate.second.getRequirement());
break;
}
}
});
return ResolveWitnessResult::ExplicitFailed;
}
namespace {
/// The set of associated types that have been inferred by matching
/// the given value witness to its corresponding requirement.
struct InferredAssociatedTypesByWitness {
/// The witness we matched.
ValueDecl *Witness = nullptr;
/// The associated types inferred from matching this witness.
SmallVector<std::pair<AssociatedTypeDecl *, Type>, 4> Inferred;
/// Inferred associated types that don't meet the associated type
/// requirements.
SmallVector<std::tuple<AssociatedTypeDecl *, Type, CheckTypeWitnessResult>,
2> NonViable;
void dump(llvm::raw_ostream &out, unsigned indent) const;
bool operator==(const InferredAssociatedTypesByWitness &other) const {
if (Inferred.size() != other.Inferred.size())
return false;
for (unsigned i = 0, e = Inferred.size(); i < e; ++i) {
if (Inferred[i].first != other.Inferred[i].first)
return false;
if (!Inferred[i].second->isEqual(other.Inferred[i].second))
return false;
}
return true;
}
bool operator!=(const InferredAssociatedTypesByWitness &other) const {
return !(*this == other);
}
SWIFT_DEBUG_DUMP;
};
}
void InferredAssociatedTypesByWitness::dump() const {
dump(llvm::errs(), 0);
}
void InferredAssociatedTypesByWitness::dump(llvm::raw_ostream &out,
unsigned indent) const {
out << "\n";
out.indent(indent) << "(";
if (Witness) {
Witness->dumpRef(out);
} else {
out << "Tautological";
}
for (const auto &inferred : Inferred) {
out << "\n";
out.indent(indent + 2);
out << inferred.first->getName() << " := "
<< inferred.second.getString();
}
for (const auto &inferred : NonViable) {
out << "\n";
out.indent(indent + 2);
out << std::get<0>(inferred)->getName() << " := "
<< std::get<1>(inferred).getString();
auto type = std::get<2>(inferred).getRequirement();
out << " [failed constraint " << type.getString() << "]";
}
out << ")";
}
/// The set of witnesses that were considered when attempting to
/// infer associated types.
using InferredAssociatedTypesByWitnesses =
SmallVector<InferredAssociatedTypesByWitness, 2>;
/// A mapping from requirements to the set of matches with witnesses.
using InferredAssociatedTypes =
SmallVector<std::pair<ValueDecl *, InferredAssociatedTypesByWitnesses>, 4>;
namespace {
void dumpInferredAssociatedTypesByWitnesses(
const InferredAssociatedTypesByWitnesses &inferred,
llvm::raw_ostream &out,
unsigned indent) {
for (const auto &value : inferred) {
value.dump(out, indent);
}
}
void dumpInferredAssociatedTypesByWitnesses(
const InferredAssociatedTypesByWitnesses &inferred) LLVM_ATTRIBUTE_USED;
void dumpInferredAssociatedTypesByWitnesses(
const InferredAssociatedTypesByWitnesses &inferred) {
dumpInferredAssociatedTypesByWitnesses(inferred, llvm::errs(), 0);
}
void dumpInferredAssociatedTypes(const InferredAssociatedTypes &inferred,
llvm::raw_ostream &out,
unsigned indent) {
for (const auto &value : inferred) {
out << "\n";
out.indent(indent) << "(";
value.first->dumpRef(out);
dumpInferredAssociatedTypesByWitnesses(value.second, out, indent + 2);
out << ")";
}
out << "\n";
}
void dumpInferredAssociatedTypes(
const InferredAssociatedTypes &inferred) LLVM_ATTRIBUTE_USED;
void dumpInferredAssociatedTypes(const InferredAssociatedTypes &inferred) {
dumpInferredAssociatedTypes(inferred, llvm::errs(), 0);
}
/// A conflict between two inferred type witnesses for the same
/// associated type.
struct TypeWitnessConflict {
/// The associated type.
AssociatedTypeDecl *AssocType;
/// The first type.
Type FirstType;
/// The requirement to which the first witness was matched.
ValueDecl *FirstRequirement;
/// The witness from which the first type witness was inferred.
ValueDecl *FirstWitness;
/// The second type.
Type SecondType;
/// The requirement to which the second witness was matched.
ValueDecl *SecondRequirement;
/// The witness from which the second type witness was inferred.
ValueDecl *SecondWitness;
};
/// A type witness inferred without the aid of a specific potential
/// value witness.
class AbstractTypeWitness {
AssociatedTypeDecl *AssocType;
Type TheType;
/// The defaulted associated type that was used to infer this type witness.
/// Need not necessarily match \c AssocType, but their names must.
AssociatedTypeDecl *DefaultedAssocType;
public:
AbstractTypeWitness(AssociatedTypeDecl *AssocType, Type TheType,
AssociatedTypeDecl *DefaultedAssocType = nullptr)
: AssocType(AssocType), TheType(TheType),
DefaultedAssocType(DefaultedAssocType) {
assert(AssocType && TheType);
assert(!DefaultedAssocType ||
(AssocType->getName() == DefaultedAssocType->getName()));
}
AssociatedTypeDecl *getAssocType() const { return AssocType; }
Type getType() const { return TheType; }
AssociatedTypeDecl *getDefaultedAssocType() const {
return DefaultedAssocType;
}
};
/// A potential solution to the set of inferred type witnesses.
struct InferredTypeWitnessesSolution {
/// The set of type witnesses inferred by this solution, along
/// with the index into the value witnesses where the type was
/// inferred.
llvm::SmallDenseMap<AssociatedTypeDecl *, std::pair<Type, unsigned>, 4>
TypeWitnesses;
/// The value witnesses selected by this step of the solution.
SmallVector<std::pair<ValueDecl *, ValueDecl *>, 4> ValueWitnesses;
/// The number of value witnesses that occur in protocol
/// extensions.
unsigned NumValueWitnessesInProtocolExtensions;
#ifndef NDEBUG
LLVM_ATTRIBUTE_USED
#endif
void dump(llvm::raw_ostream &out) const;
bool operator==(const InferredTypeWitnessesSolution &other) const {
for (const auto &otherTypeWitness : other.TypeWitnesses) {
auto typeWitness = TypeWitnesses.find(otherTypeWitness.first);
if (!typeWitness->second.first->isEqual(otherTypeWitness.second.first))
return false;
}
return true;
}
};
void InferredTypeWitnessesSolution::dump(llvm::raw_ostream &out) const {
out << "Value witnesses in protocol extensions: "
<< NumValueWitnessesInProtocolExtensions << "\n";
const auto numValueWitnesses = ValueWitnesses.size();
out << "Type Witnesses:\n";
for (auto &typeWitness : TypeWitnesses) {
out << " " << typeWitness.first->getName() << " := ";
typeWitness.second.first->print(out);
if (typeWitness.second.second == numValueWitnesses) {
out << ", abstract";
} else {
out << ", inferred from $" << typeWitness.second.second;
}
out << '\n';
}
out << "Value Witnesses:\n";
for (unsigned i : indices(ValueWitnesses)) {
const auto &valueWitness = ValueWitnesses[i];
out << '$' << i << ":\n ";
valueWitness.first->dumpRef(out);
out << " ->\n ";
if (valueWitness.second)
valueWitness.second->dumpRef(out);
else
out << "<skipped>";
out << '\n';
}
}
/// A system for recording and probing the integrity of a type witness solution
/// for a set of unresolved associated type declarations.
///
/// Right now can reason only about abstract type witnesses, i.e., same-type
/// constraints, default type definitions, and bindings to generic parameters.
class TypeWitnessSystem final {
/// Equivalence classes are used on demand to express equivalences between
/// witness candidates and reflect changes to resolved types across their
/// members.
class EquivalenceClass final {
/// The pointer:
/// - The resolved type for witness candidates belonging to this equivalence
/// class. The resolved type may be a type parameter, but cannot directly
/// pertain to a name variable in the owning system; instead, witness
/// candidates that should resolve to the same type share an equivalence
/// class.
/// The int:
/// - A flag indicating whether the resolved type is ambiguous. When set,
/// the resolved type is null.
/// - A flag indicating whether the resolved type is 'preferred', meaning
/// it came from the exact protocol we're checking conformance to.
/// A preferred type takes precedence over a non-preferred type.
llvm::PointerIntPair<Type, 2, unsigned> ResolvedTyAndFlags;
public:
EquivalenceClass(Type ty, bool preferred)
: ResolvedTyAndFlags(ty, preferred ? 2 : 0) {}
EquivalenceClass(const EquivalenceClass &) = delete;
EquivalenceClass(EquivalenceClass &&) = delete;
EquivalenceClass &operator=(const EquivalenceClass &) = delete;
EquivalenceClass &operator=(EquivalenceClass &&) = delete;
Type getResolvedType() const {
return ResolvedTyAndFlags.getPointer();
}
void setResolvedType(Type ty, bool preferred);
bool isAmbiguous() const {
return (ResolvedTyAndFlags.getInt() & 1) != 0;
}
void setAmbiguous() {
ResolvedTyAndFlags.setPointerAndInt(nullptr, 1);
}
bool isPreferred() const {
return (ResolvedTyAndFlags.getInt() & 2) != 0;
}
void setPreferred() {
assert(!isAmbiguous());
ResolvedTyAndFlags.setInt(ResolvedTyAndFlags.getInt() | 2);
}
void dump(llvm::raw_ostream &out) const;
};
/// A type witness candidate for a name variable.
struct TypeWitnessCandidate final {
/// The defaulted associated type declaration correlating with this
/// candidate, if present.
AssociatedTypeDecl *DefaultedAssocType;
/// The equivalence class of this candidate.
EquivalenceClass *EquivClass;
};
/// The set of equivalence classes in the system.
llvm::SmallPtrSet<EquivalenceClass *, 4> EquivalenceClasses;
/// The mapping from name variables (the names of unresolved associated
/// type declarations) to their corresponding type witness candidates.
llvm::SmallDenseMap<Identifier, TypeWitnessCandidate, 4> TypeWitnesses;
public:
TypeWitnessSystem(ArrayRef<AssociatedTypeDecl *> assocTypes);
~TypeWitnessSystem();
TypeWitnessSystem(const TypeWitnessSystem &) = delete;
TypeWitnessSystem(TypeWitnessSystem &&) = delete;
TypeWitnessSystem &operator=(const TypeWitnessSystem &) = delete;
TypeWitnessSystem &operator=(TypeWitnessSystem &&) = delete;
/// Get the resolved type witness for the associated type with the given name.
Type getResolvedTypeWitness(Identifier name) const;
bool hasResolvedTypeWitness(Identifier name) const;
/// Get the defaulted associated type relating to the resolved type witness
/// for the associated type with the given name, if present.
AssociatedTypeDecl *getDefaultedAssocType(Identifier name) const;
/// Record a type witness for the given associated type name.
///
/// \note This need not lead to the resolution of a type witness, e.g.
/// an associated type may be defaulted to another.
void addTypeWitness(Identifier name, Type type, bool preferred);
/// Record a default type witness.
///
/// \param defaultedAssocType The specific associated type declaration that
/// defines the given default type.
///
/// \note This need not lead to the resolution of a type witness.
void addDefaultTypeWitness(Type type, AssociatedTypeDecl *defaultedAssocType,
bool preferred);
/// Record the given same-type requirement, if regarded of interest to
/// the system.
///
/// \note This need not lead to the resolution of a type witness.
void addSameTypeRequirement(const Requirement &req, bool preferred);
void dump(llvm::raw_ostream &out,
const NormalProtocolConformance *conformance) const;
private:
/// Form an equivalence between the given name variables.
void addEquivalence(Identifier name1, Identifier name2);
/// Merge \p equivClass2 into \p equivClass1.
///
/// \note This will delete \p equivClass2 after migrating its members to
/// \p equivClass1.
void mergeEquivalenceClasses(EquivalenceClass *equivClass1,
const EquivalenceClass *equivClass2);
/// The result of comparing two resolved types targeting a single equivalence