-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathSILGenProlog.cpp
567 lines (489 loc) · 20.2 KB
/
SILGenProlog.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
//===--- SILGenProlog.cpp - Function prologue emission --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGenFunction.h"
#include "Initialization.h"
#include "ManagedValue.h"
#include "Scope.h"
#include "swift/SIL/SILArgument.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/ParameterList.h"
using namespace swift;
using namespace Lowering;
SILValue SILGenFunction::emitSelfDecl(VarDecl *selfDecl) {
// Emit the implicit 'self' argument.
SILType selfType = getLoweredLoadableType(selfDecl->getType());
SILValue selfValue = F.begin()->createFunctionArgument(selfType, selfDecl);
VarLocs[selfDecl] = VarLoc::get(selfValue);
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
uint16_t ArgNo = 1; // Hardcoded for destructors.
B.createDebugValue(PrologueLoc, selfValue,
SILDebugVariable(selfDecl->isLet(), ArgNo));
return selfValue;
}
namespace {
/// Cleanup that writes back to an inout argument on function exit.
class CleanupWriteBackToInOut : public Cleanup {
VarDecl *var;
SILValue inoutAddr;
public:
CleanupWriteBackToInOut(VarDecl *var, SILValue inoutAddr)
: var(var), inoutAddr(inoutAddr) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
// Assign from the local variable to the inout address with an
// 'autogenerated' copyaddr.
l.markAutoGenerated();
SGF.B.createCopyAddr(l, SGF.VarLocs[var].value, inoutAddr,
IsNotTake, IsNotInitialization);
}
};
} // end anonymous namespace
namespace {
class StrongReleaseCleanup : public Cleanup {
SILValue box;
public:
StrongReleaseCleanup(SILValue box) : box(box) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
SGF.B.emitDestroyValueOperation(l, box);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "DeallocateValueBuffer\n"
<< "State: " << getState() << "box: " << box << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
/*RetTy*/ ManagedValue>
{
public:
SILGenFunction &SGF;
SILBasicBlock *parent;
SILLocation loc;
CanSILFunctionType fnTy;
ArrayRef<SILParameterInfo> ¶meters;
EmitBBArguments(SILGenFunction &sgf, SILBasicBlock *parent, SILLocation l,
CanSILFunctionType fnTy,
ArrayRef<SILParameterInfo> ¶meters)
: SGF(sgf), parent(parent), loc(l), fnTy(fnTy), parameters(parameters) {}
ManagedValue visitType(CanType t) {
return visitType(t, /*isInOut=*/false);
}
ManagedValue visitType(CanType t, bool isInOut) {
// The calling convention always uses minimal resilience expansion but
// inside the function we lower/expand types in context of the current
// function.
auto argType = SGF.SGM.Types.getLoweredType(t, SGF.getTypeExpansionContext());
auto argTypeConv =
SGF.SGM.Types.getLoweredType(t, TypeExpansionContext::minimal());
argType = argType.getCategoryType(argTypeConv.getCategory());
if (isInOut)
argType = SILType::getPrimitiveAddressType(argType.getASTType());
// Pop the next parameter info.
auto parameterInfo = parameters.front();
parameters = parameters.slice(1);
auto paramType =
SGF.F.mapTypeIntoContext(SGF.getSILType(parameterInfo, fnTy));
ManagedValue mv = SGF.B.createInputFunctionArgument(
paramType, loc.getAsASTNode<ValueDecl>());
if (argType != paramType) {
// This is a hack to deal with the fact that Self.Type comes in as a
// static metatype, but we have to downcast it to a dynamic Self
// metatype to get the right semantics.
assert(
cast<DynamicSelfType>(
argType.castTo<MetatypeType>().getInstanceType())
.getSelfType()
== paramType.castTo<MetatypeType>().getInstanceType());
mv = SGF.B.createUncheckedBitCast(loc, mv, argType);
}
if (isInOut)
return mv;
// This can happen if the value is resilient in the calling convention
// but not resilient locally.
if (argType.isLoadable(SGF.F) && argType.isAddress()) {
if (mv.isPlusOne(SGF))
mv = SGF.B.createLoadTake(loc, mv);
else
mv = SGF.B.createLoadBorrow(loc, mv);
}
// If the value is a (possibly optional) ObjC block passed into the entry
// point of the function, then copy it so we can treat the value reliably
// as a heap object. Escape analysis can eliminate this copy if it's
// unneeded during optimization.
CanType objectType = t;
if (auto theObjTy = t.getOptionalObjectType())
objectType = theObjTy;
if (isa<FunctionType>(objectType) &&
cast<FunctionType>(objectType)->getRepresentation()
== FunctionType::Representation::Block) {
SILValue blockCopy = SGF.B.createCopyBlock(loc, mv.getValue());
mv = SGF.emitManagedRValueWithCleanup(blockCopy);
}
return mv;
}
ManagedValue visitTupleType(CanTupleType t) {
SmallVector<ManagedValue, 4> elements;
auto &tl = SGF.SGM.Types.getTypeLowering(t, SGF.getTypeExpansionContext());
bool canBeGuaranteed = tl.isLoadable();
// Collect the exploded elements.
for (auto fieldType : t.getElementTypes()) {
auto elt = visit(fieldType);
// If we can't borrow one of the elements as a guaranteed parameter, then
// we have to +1 the tuple.
if (elt.hasCleanup())
canBeGuaranteed = false;
elements.push_back(elt);
}
if (tl.isLoadable() || !SGF.silConv.useLoweredAddresses()) {
SmallVector<SILValue, 4> elementValues;
if (canBeGuaranteed) {
// If all of the elements were guaranteed, we can form a guaranteed tuple.
for (auto element : elements)
elementValues.push_back(element.getUnmanagedValue());
} else {
// Otherwise, we need to move or copy values into a +1 tuple.
for (auto element : elements) {
SILValue value = element.hasCleanup()
? element.forward(SGF)
: element.copyUnmanaged(SGF, loc).forward(SGF);
elementValues.push_back(value);
}
}
auto tupleValue = SGF.B.createTuple(loc, tl.getLoweredType(),
elementValues);
return canBeGuaranteed
? ManagedValue::forUnmanaged(tupleValue)
: SGF.emitManagedRValueWithCleanup(tupleValue);
} else {
// If the type is address-only, we need to move or copy the elements into
// a tuple in memory.
// TODO: It would be a bit more efficient to use a preallocated buffer
// in this case.
auto buffer = SGF.emitTemporaryAllocation(loc, tl.getLoweredType());
for (auto i : indices(elements)) {
auto element = elements[i];
auto elementBuffer = SGF.B.createTupleElementAddr(loc, buffer,
i, element.getType().getAddressType());
if (element.hasCleanup())
element.forwardInto(SGF, loc, elementBuffer);
else
element.copyInto(SGF, loc, elementBuffer);
}
return SGF.emitManagedRValueWithCleanup(buffer);
}
}
};
} // end anonymous namespace
namespace {
/// A helper for creating SILArguments and binding variables to the argument
/// names.
struct ArgumentInitHelper {
SILGenFunction &SGF;
SILFunction &f;
SILGenBuilder &initB;
/// An ArrayRef that we use in our SILParameterList queue. Parameters are
/// sliced off of the front as they're emitted.
ArrayRef<SILParameterInfo> parameters;
uint16_t ArgNo = 0;
ArgumentInitHelper(SILGenFunction &SGF, SILFunction &f)
: SGF(SGF), f(f), initB(SGF.B),
parameters(
f.getLoweredFunctionTypeInContext(SGF.B.getTypeExpansionContext())
->getParameters()) {}
unsigned getNumArgs() const { return ArgNo; }
ManagedValue makeArgument(Type ty, bool isInOut, SILBasicBlock *parent,
SILLocation l) {
assert(ty && "no type?!");
// Create an RValue by emitting destructured arguments into a basic block.
CanType canTy = ty->getCanonicalType();
EmitBBArguments argEmitter(SGF, parent, l,
f.getLoweredFunctionType(), parameters);
// Note: inouts of tuples are not exploded, so we bypass visit().
if (isInOut)
return argEmitter.visitType(canTy, /*isInOut=*/true);
return argEmitter.visit(canTy);
}
/// Create a SILArgument and store its value into the given Initialization,
/// if not null.
void makeArgumentIntoBinding(Type ty, SILBasicBlock *parent, ParamDecl *pd) {
SILLocation loc(pd);
loc.markAsPrologue();
ManagedValue argrv = makeArgument(ty, pd->isInOut(), parent, loc);
if (pd->isInOut()) {
assert(argrv.getType().isAddress() && "expected inout to be address");
} else {
assert(pd->isImmutable() && "expected parameter to be immutable!");
// If the variable is immutable, we can bind the value as is.
// Leave the cleanup on the argument, if any, in place to consume the
// argument if we're responsible for it.
}
SGF.VarLocs[pd] = SILGenFunction::VarLoc::get(argrv.getValue());
SILValue value = argrv.getValue();
SILDebugVariable varinfo(pd->isImmutable(), ArgNo);
if (!argrv.getType().isAddress()) {
SGF.B.createDebugValue(loc, value, varinfo);
} else {
if (auto AllocStack = dyn_cast<AllocStackInst>(value))
AllocStack->setArgNo(ArgNo);
else
SGF.B.createDebugValueAddr(loc, value, varinfo);
}
}
void emitParam(ParamDecl *PD) {
auto type = PD->getType();
assert(type->isMaterializable());
++ArgNo;
if (PD->hasName()) {
makeArgumentIntoBinding(type, &*f.begin(), PD);
return;
}
emitAnonymousParam(type, PD, PD);
}
void emitAnonymousParam(Type type, SILLocation paramLoc, ParamDecl *PD) {
// A value bound to _ is unused and can be immediately released.
Scope discardScope(SGF.Cleanups, CleanupLocation(PD));
// Manage the parameter.
auto argrv = makeArgument(type, PD->isInOut(), &*f.begin(), paramLoc);
// Emit debug information for the argument.
SILLocation loc(PD);
loc.markAsPrologue();
if (argrv.getType().isAddress())
SGF.B.createDebugValueAddr(loc, argrv.getValue(),
SILDebugVariable(PD->isLet(), ArgNo));
else
SGF.B.createDebugValue(loc, argrv.getValue(),
SILDebugVariable(PD->isLet(), ArgNo));
}
};
} // end anonymous namespace
static void makeArgument(Type ty, ParamDecl *decl,
SmallVectorImpl<SILValue> &args, SILGenFunction &SGF) {
assert(ty && "no type?!");
// Destructure tuple value arguments.
if (TupleType *tupleTy = decl->isInOut() ? nullptr : ty->getAs<TupleType>()) {
for (auto fieldType : tupleTy->getElementTypes())
makeArgument(fieldType, decl, args, SGF);
} else {
auto loweredTy = SGF.getLoweredTypeForFunctionArgument(ty);
if (decl->isInOut())
loweredTy = SILType::getPrimitiveAddressType(loweredTy.getASTType());
auto arg = SGF.F.begin()->createFunctionArgument(loweredTy, decl);
args.push_back(arg);
}
}
void SILGenFunction::bindParameterForForwarding(ParamDecl *param,
SmallVectorImpl<SILValue> ¶meters) {
makeArgument(param->getType(), param, parameters, *this);
}
void SILGenFunction::bindParametersForForwarding(const ParameterList *params,
SmallVectorImpl<SILValue> ¶meters) {
for (auto param : *params)
bindParameterForForwarding(param, parameters);
}
static void emitCaptureArguments(SILGenFunction &SGF,
GenericSignature origGenericSig,
CapturedValue capture,
uint16_t ArgNo) {
auto *VD = cast<VarDecl>(capture.getDecl());
SILLocation Loc(VD);
Loc.markAsPrologue();
// Local function to get the captured variable type within the capturing
// context.
auto getVarTypeInCaptureContext = [&]() -> Type {
auto interfaceType = VD->getInterfaceType()->getCanonicalType(
origGenericSig);
return SGF.F.mapTypeIntoContext(interfaceType);
};
auto expansion = SGF.getTypeExpansionContext();
switch (SGF.SGM.Types.getDeclCaptureKind(capture, expansion)) {
case CaptureKind::Constant: {
auto type = getVarTypeInCaptureContext();
auto &lowering = SGF.getTypeLowering(type);
// Constant decls are captured by value.
SILType ty = lowering.getLoweredType();
SILValue val = SGF.F.begin()->createFunctionArgument(ty, VD);
bool NeedToDestroyValueAtExit = false;
// If the original variable was settable, then Sema will have treated the
// VarDecl as an lvalue, even in the closure's use. As such, we need to
// allow formation of the address for this captured value. Create a
// temporary within the closure to provide this address.
if (VD->isSettable(VD->getDeclContext())) {
auto addr = SGF.emitTemporaryAllocation(VD, ty);
// We have created a copy that needs to be destroyed.
val = SGF.B.emitCopyValueOperation(Loc, val);
NeedToDestroyValueAtExit = true;
lowering.emitStore(SGF.B, VD, val, addr, StoreOwnershipQualifier::Init);
val = addr;
}
SGF.VarLocs[VD] = SILGenFunction::VarLoc::get(val);
if (auto *AllocStack = dyn_cast<AllocStackInst>(val))
AllocStack->setArgNo(ArgNo);
else {
SILDebugVariable DbgVar(/*Constant*/ true, ArgNo);
SGF.B.createDebugValue(Loc, val, DbgVar);
}
// TODO: Closure contexts should always be guaranteed.
if (NeedToDestroyValueAtExit && !lowering.isTrivial())
SGF.enterDestroyCleanup(val);
break;
}
case CaptureKind::Box: {
// LValues are captured as a retained @box that owns
// the captured value.
auto type = getVarTypeInCaptureContext();
// Get the content for the box in the minimal resilience domain because we
// are declaring a type.
auto boxTy = SGF.SGM.Types.getContextBoxTypeForCapture(
VD,
SGF.SGM.Types.getLoweredRValueType(TypeExpansionContext::minimal(),
type),
SGF.F.getGenericEnvironment(), /*mutable*/ true);
SILValue box = SGF.F.begin()->createFunctionArgument(
SILType::getPrimitiveObjectType(boxTy), VD);
SILValue addr = SGF.B.createProjectBox(VD, box, 0);
SGF.VarLocs[VD] = SILGenFunction::VarLoc::get(addr, box);
SILDebugVariable DbgVar(/*Constant*/ false, ArgNo);
SGF.B.createDebugValueAddr(Loc, addr, DbgVar);
break;
}
case CaptureKind::Immutable:
case CaptureKind::StorageAddress: {
// Non-escaping stored decls are captured as the address of the value.
auto type = getVarTypeInCaptureContext();
SILType ty = SGF.getLoweredType(type).getAddressType();
SILValue addr = SGF.F.begin()->createFunctionArgument(ty, VD);
SGF.VarLocs[VD] = SILGenFunction::VarLoc::get(addr);
SILDebugVariable DbgVar(/*Constant*/ true, ArgNo);
SGF.B.createDebugValueAddr(Loc, addr, DbgVar);
break;
}
}
}
void SILGenFunction::emitProlog(CaptureInfo captureInfo,
ParameterList *paramList,
ParamDecl *selfParam,
DeclContext *DC,
Type resultType,
bool throws,
SourceLoc throwsLoc) {
uint16_t ArgNo = emitProlog(paramList, selfParam, resultType,
DC, throws, throwsLoc);
// Emit the capture argument variables. These are placed last because they
// become the first curry level of the SIL function.
assert(captureInfo.hasBeenComputed() &&
"can't emit prolog of function with uncomputed captures");
for (auto capture : captureInfo.getCaptures()) {
if (capture.isDynamicSelfMetadata()) {
auto selfMetatype = MetatypeType::get(
captureInfo.getDynamicSelfType());
SILType ty = getLoweredType(selfMetatype);
SILValue val = F.begin()->createFunctionArgument(ty);
(void) val;
continue;
}
if (capture.isOpaqueValue()) {
OpaqueValueExpr *opaqueValue = capture.getOpaqueValue();
Type type = opaqueValue->getType()->mapTypeOutOfContext();
type = F.mapTypeIntoContext(type);
auto &lowering = getTypeLowering(type);
SILType ty = lowering.getLoweredType();
SILValue val = F.begin()->createFunctionArgument(ty);
OpaqueValues[opaqueValue] = ManagedValue::forUnmanaged(val);
// Opaque values are always passed 'owned', so add a clean up if needed.
if (!lowering.isTrivial())
enterDestroyCleanup(val);
continue;
}
emitCaptureArguments(*this, DC->getGenericSignatureOfContext(),
capture, ++ArgNo);
}
// Emit an unreachable instruction if a parameter type is
// uninhabited
if (paramList) {
for (auto *param : *paramList) {
if (param->getType()->isStructurallyUninhabited()) {
SILLocation unreachableLoc(param);
unreachableLoc.markAsPrologue();
B.createUnreachable(unreachableLoc);
break;
}
}
}
}
static void emitIndirectResultParameters(SILGenFunction &SGF, Type resultType,
DeclContext *DC) {
// Expand tuples.
if (auto tupleType = resultType->getAs<TupleType>()) {
for (auto eltType : tupleType->getElementTypes()) {
emitIndirectResultParameters(SGF, eltType, DC);
}
return;
}
// If the return type is address-only, emit the indirect return argument.
// The calling convention always uses minimal resilience expansion.
auto &resultTI =
SGF.SGM.Types.getTypeLowering(DC->mapTypeIntoContext(resultType),
SGF.getTypeExpansionContext());
auto &resultTIConv = SGF.SGM.Types.getTypeLowering(
DC->mapTypeIntoContext(resultType), TypeExpansionContext::minimal());
if (!SILModuleConventions::isReturnedIndirectlyInSIL(
resultTIConv.getLoweredType(), SGF.SGM.M)) {
return;
}
auto &ctx = SGF.getASTContext();
auto var = new (ctx) ParamDecl(SourceLoc(), SourceLoc(),
ctx.getIdentifier("$return_value"), SourceLoc(),
ctx.getIdentifier("$return_value"),
DC);
var->setSpecifier(ParamSpecifier::InOut);
var->setInterfaceType(resultType);
auto *arg = SGF.F.begin()->createFunctionArgument(
resultTI.getLoweredType().getAddressType(), var);
(void)arg;
}
uint16_t SILGenFunction::emitProlog(ParameterList *paramList,
ParamDecl *selfParam,
Type resultType,
DeclContext *DC,
bool throws,
SourceLoc throwsLoc) {
// Create the indirect result parameters.
auto genericSig = DC->getGenericSignatureOfContext();
resultType = resultType->getCanonicalType(genericSig);
emitIndirectResultParameters(*this, resultType, DC);
// Emit the argument variables in calling convention order.
ArgumentInitHelper emitter(*this, F);
// Add the SILArguments and use them to initialize the local argument
// values.
if (paramList)
for (auto *param : *paramList)
emitter.emitParam(param);
if (selfParam)
emitter.emitParam(selfParam);
// Record the ArgNo of the artificial $error inout argument.
unsigned ArgNo = emitter.getNumArgs();
if (throws) {
auto NativeErrorTy = SILType::getExceptionType(getASTContext());
ManagedValue Undef = emitUndef(NativeErrorTy);
SILDebugVariable DbgVar("$error", /*Constant*/ false, ++ArgNo);
RegularLocation loc = RegularLocation::getAutoGeneratedLocation();
if (throwsLoc.isValid())
loc = throwsLoc;
B.createDebugValue(loc, Undef.getValue(), DbgVar);
}
return ArgNo;
}