-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathSpeculativeDevirtualizer.cpp
641 lines (552 loc) · 24 KB
/
SpeculativeDevirtualizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
//===--- SpeculativeDevirtualizer.cpp - Speculatively devirtualize calls --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Speculatively devirtualizes witness- and class-method calls into direct
// calls.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-speculative-devirtualizer"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OptimizationRemark.h"
#include "swift/SILOptimizer/Analysis/ClassHierarchyAnalysis.h"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/PassManager.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/Devirtualize.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/AST/ASTContext.h"
#include "swift/Basic/Assertions.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
// This is the limit for the number of subclasses (jump targets) that the
// speculative devirtualizer will try to predict.
static const int MaxNumSpeculativeTargets = 6;
STATISTIC(NumTargetsPredicted, "Number of monomorphic functions predicted");
/// We want to form a second edge to the given block, but we know
/// that'll form a critical edge. Return a basic block to which we can
/// create an edge essentially like the original edge.
static SILBasicBlock *cloneEdge(TermInst *TI, unsigned SuccIndex) {
#ifndef NDEBUG
auto origDestBB = TI->getSuccessors()[SuccIndex].getBB();
#endif
// Split the edge twice. The first split will become our cloned
// and temporarily-unused edge. The second split will remain in place
// as the original edge.
auto clonedEdgeBB = splitEdge(TI, SuccIndex);
auto replacementEdgeBB = splitEdge(TI, SuccIndex);
// Extract the terminators.
auto clonedEdgeBranch =
cast<BranchInst>(clonedEdgeBB->getTerminator());
auto replacementEdgeBranch =
cast<BranchInst>(replacementEdgeBB->getTerminator());
assert(TI->getSuccessors()[SuccIndex].getBB() == replacementEdgeBB);
assert(replacementEdgeBranch->getDestBB() == clonedEdgeBB);
assert(clonedEdgeBranch->getDestBB() == origDestBB);
// Change the replacement branch to point to the original destination.
// This will leave the cloned edge unused, which is how we wanted it.
replacementEdgeBranch->getSuccessors()[0] = clonedEdgeBranch->getDestBB();
assert(clonedEdgeBB->pred_empty());
return clonedEdgeBB;
}
// A utility function for cloning the apply instruction.
static FullApplySite CloneApply(FullApplySite AI, SILValue SelfArg,
SILBuilder &Builder) {
// Clone the Apply.
Builder.setCurrentDebugScope(AI.getDebugScope());
auto Args = AI.getArguments();
SmallVector<SILValue, 8> Ret(Args.size());
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
if (i == e - 1 && SelfArg) {
Ret[i] = SelfArg;
} else {
Ret[i] = Args[i];
}
}
FullApplySite NAI;
switch (AI.getInstruction()->getKind()) {
case SILInstructionKind::ApplyInst:
NAI = Builder.createApply(AI.getLoc(), AI.getCallee(),
AI.getSubstitutionMap(),
Ret, AI.getApplyOptions());
break;
case SILInstructionKind::TryApplyInst: {
auto *TryApplyI = cast<TryApplyInst>(AI.getInstruction());
auto NormalBB = cloneEdge(TryApplyI, TryApplyInst::NormalIdx);
auto ErrorBB = cloneEdge(TryApplyI, TryApplyInst::ErrorIdx);
NAI = Builder.createTryApply(AI.getLoc(), AI.getCallee(),
AI.getSubstitutionMap(),
Ret, NormalBB, ErrorBB,
AI.getApplyOptions());
break;
}
default:
llvm_unreachable("Trying to clone an unsupported apply instruction");
}
return NAI;
}
/// Insert monomorphic inline caches for a specific class or metatype
/// type \p SubClassTy.
static FullApplySite speculateMonomorphicTarget(SILPassManager *pm, FullApplySite AI,
CanType SubType, ClassDecl *CD,
CanType ClassType,
CheckedCastBranchInst *&CCBI) {
if (SubType->hasDynamicSelfType())
return FullApplySite();
CCBI = nullptr;
// Bail if this class_method cannot be devirtualized.
if (!canDevirtualizeClassMethod(AI, CD, ClassType))
return FullApplySite();
// Can't speculate begin_apply yet.
if (isa<BeginApplyInst>(AI))
return FullApplySite();
// Create a diamond shaped control flow and a checked_cast_branch
// instruction that checks the exact type of the object.
// This cast selects between two paths: one that calls the slow dynamic
// dispatch and one that calls the specific method.
auto It = AI.getInstruction()->getIterator();
SILFunction *F = AI.getFunction();
SILBasicBlock *Entry = AI.getParent();
ClassMethodInst *CMI = cast<ClassMethodInst>(AI.getCallee());
// Iden is the basic block containing the direct call.
SILBasicBlock *Iden = F->createBasicBlock();
// Virt is the block containing the slow virtual call.
SILBasicBlock *Virt = F->createBasicBlock();
Iden->createPhiArgument(SILType::getPrimitiveObjectType(SubType),
CMI->getOperand()->getOwnershipKind());
SILBasicBlock *Continue = Entry->split(It);
SILBuilderWithScope Builder(Entry, AI.getInstruction());
// Create the checked_cast_branch instruction that checks at runtime if the
// class instance is identical to the SILType.
CCBI = Builder.createCheckedCastBranch(AI.getLoc(), /*exact*/ true,
CMI->getOperand(),
CMI->getOperand()->getType().getASTType(),
SILType::getPrimitiveObjectType(SubType),
SubType, Iden, Virt);
It = CCBI->getIterator();
SILBuilderWithScope VirtBuilder(Virt, AI.getInstruction());
SILBuilderWithScope IdenBuilder(Iden, AI.getInstruction());
// This is the class reference downcasted into subclass SubType.
SILValue DownCastedClassInstance = Iden->getArgument(0);
// Copy the two apply instructions into the two blocks.
FullApplySite IdenAI = CloneApply(AI, DownCastedClassInstance, IdenBuilder);
FullApplySite VirtAI = CloneApply(AI, SILValue(), VirtBuilder);
// See if Continue has a release on self as the instruction right after the
// apply. If it exists, move it into position in the diamond.
SILBasicBlock::iterator next =
next_or_end(Continue->begin(), Continue->end());
auto *Release =
(next == Continue->end()) ? nullptr : dyn_cast<StrongReleaseInst>(next);
if (Release && Release->getOperand() == CMI->getOperand()) {
VirtBuilder.createStrongRelease(Release->getLoc(), CMI->getOperand(),
Release->getAtomicity());
IdenBuilder.createStrongRelease(Release->getLoc(), DownCastedClassInstance,
Release->getAtomicity());
Release->eraseFromParent();
}
// Create a PHInode for returning the return value from both apply
// instructions.
SILArgument *Arg =
Continue->createPhiArgument(AI.getType(), OwnershipKind::Owned);
if (!isa<TryApplyInst>(AI)) {
if (AI.getSubstCalleeType()->isNoReturnFunction(
F->getModule(), AI.getFunction()->getTypeExpansionContext())) {
IdenBuilder.createUnreachable(AI.getLoc());
VirtBuilder.createUnreachable(AI.getLoc());
} else {
IdenBuilder.createBranch(AI.getLoc(), Continue,
{ cast<ApplyInst>(IdenAI) });
VirtBuilder.createBranch(AI.getLoc(), Continue,
{ cast<ApplyInst>(VirtAI) });
}
}
// Remove the old Apply instruction.
assert(AI.getInstruction() == &Continue->front() &&
"AI should be the first instruction in the split Continue block");
if (isa<TryApplyInst>(AI)) {
AI.getInstruction()->eraseFromParent();
assert(Continue->empty() &&
"There should not be an instruction after try_apply");
Continue->eraseFromParent();
} else {
auto apply = cast<ApplyInst>(AI);
apply->replaceAllUsesWith(Arg);
apply->eraseFromParent();
assert(!Continue->empty() &&
"There should be at least a terminator after AI");
}
// Update the stats.
++NumTargetsPredicted;
// Devirtualize the apply instruction on the identical path.
auto NewInst = devirtualizeClassMethod(pm, IdenAI, DownCastedClassInstance, CD,
ClassType, nullptr)
.first;
assert(NewInst && "Expected to be able to devirtualize apply!");
(void)NewInst;
deleteDevirtualizedApply(IdenAI);
// Split critical edges resulting from VirtAI.
if (auto *TAI = dyn_cast<TryApplyInst>(VirtAI)) {
auto *ErrorBB = TAI->getFunction()->createBasicBlock();
SILArgument *ErrorArg = nullptr;
if (TAI->getErrorBB()->getNumArguments() == 1) {
ErrorArg = TAI->getErrorBB()->getArgument(0);
ErrorBB->createPhiArgument(ErrorArg->getType(), OwnershipKind::Owned);
}
Builder.setInsertionPoint(ErrorBB);
if (ErrorArg) {
Builder.createBranch(TAI->getLoc(), TAI->getErrorBB(),
{ErrorBB->getArgument(0)});
} else {
Builder.createBranch(TAI->getLoc(), TAI->getErrorBB());
}
auto *NormalBB = TAI->getFunction()->createBasicBlock();
NormalBB->createPhiArgument(TAI->getNormalBB()->getArgument(0)->getType(),
OwnershipKind::Owned);
Builder.setInsertionPoint(NormalBB);
Builder.createBranch(TAI->getLoc(), TAI->getNormalBB(),
{NormalBB->getArgument(0)});
Builder.setInsertionPoint(VirtAI.getInstruction());
SmallVector<SILValue, 4> Args;
for (auto Arg : VirtAI.getArguments()) {
Args.push_back(Arg);
}
FullApplySite NewVirtAI = Builder.createTryApply(
VirtAI.getLoc(), VirtAI.getCallee(),
VirtAI.getSubstitutionMap(),
Args, NormalBB, ErrorBB,
VirtAI.getApplyOptions());
VirtAI.getInstruction()->eraseFromParent();
VirtAI = NewVirtAI;
}
return VirtAI;
}
/// Returns true, if a method implementation to be called by the
/// default case handler of a speculative devirtualization is statically
/// known. This happens if it can be proven that generated
/// checked_cast_br instructions cover all other possible cases.
///
/// \p CHA class hierarchy analysis to be used
/// \p AI invocation instruction
/// \p CD static class of the instance whose method is being invoked
/// \p Subs set of direct subclasses of this class
static bool isDefaultCaseKnown(ClassHierarchyAnalysis *CHA,
FullApplySite AI,
ClassDecl *CD,
ClassHierarchyAnalysis::ClassList &Subs) {
ClassMethodInst *CMI = cast<ClassMethodInst>(AI.getCallee());
auto *Method = CMI->getMember().getAbstractFunctionDecl();
assert(Method && "not a function");
if (CD->isFinal())
return true;
// If the class has an @objc ancestry it can be dynamically subclassed and we
// can't therefore statically know the default case.
if (CD->checkAncestry(AncestryFlags::ObjC))
return false;
// Only handle classes defined within the SILModule's associated context.
if (!CD->isChildContextOf(AI.getModule().getAssociatedContext()))
return false;
if (!CD->hasAccess())
return false;
// Only consider 'private' members, unless we are in whole-module compilation.
switch (CD->getEffectiveAccess()) {
case AccessLevel::Open:
return false;
case AccessLevel::Public:
case AccessLevel::Package:
case AccessLevel::Internal:
if (!AI.getModule().isWholeModule())
return false;
break;
case AccessLevel::FilePrivate:
case AccessLevel::Private:
break;
}
// This is a private or a module internal class.
//
// We can analyze the class hierarchy rooted at it and
// eventually devirtualize a method call more efficiently.
// First, analyze all direct subclasses.
// We know that a dedicated checked_cast_br check is
// generated for each direct subclass by tryToSpeculateTarget.
for (auto S : Subs) {
// Check if the subclass overrides a method
auto *FD = S->findOverridingDecl(Method);
if (!FD)
continue;
if (CHA->hasKnownDirectSubclasses(S)) {
// This subclass has its own subclasses and
// they will use this implementation or provide
// their own. In either case it is not covered by
// checked_cast_br instructions generated by
// tryToSpeculateTarget. Therefore it increases
// the number of remaining cases to be handled
// by the default case handler.
return false;
}
}
// Then, analyze indirect subclasses.
// Set of indirect subclasses for the class.
auto &IndirectSubs = CHA->getIndirectSubClasses(CD);
// Check if any indirect subclasses use an implementation
// of the method different from the implementation in
// the current class. If this is the case, then such
// an indirect subclass would need a dedicated
// checked_cast_br check to be devirtualized. But this is
// not done by tryToSpeculateTarget yet and therefore
// such a subclass should be handled by the "default"
// case handler, which essentially means that "default"
// case cannot be devirtualized since it covers more
// then one alternative.
for (auto S : IndirectSubs) {
auto *ImplFD = S->findImplementingMethod(Method);
if (ImplFD != Method) {
// Different implementation is used by a subclass.
// Therefore, the default case is not known.
return false;
}
}
return true;
}
/// Try to speculate the call target for the call \p AI. This function
/// returns true if a change was made.
static bool tryToSpeculateTarget(SILPassManager *pm, FullApplySite AI, ClassHierarchyAnalysis *CHA,
OptRemark::Emitter &ORE) {
ClassMethodInst *CMI = cast<ClassMethodInst>(AI.getCallee());
// Strip any upcasts off of our 'self' value, potentially leaving us
// with a value whose type is closer (in the class hierarchy) to the
// actual dynamic type.
auto SubTypeValue = stripUpCasts(CMI->getOperand());
CanType SubType = SubTypeValue->getType().getASTType();
// Bail if any generic types parameters of the class instance type are
// unbound.
// We cannot devirtualize unbound generic calls yet.
if (SubType->hasArchetype())
return false;
auto *F = CMI->getFunction();
auto &M = F->getModule();
CheckedCastBranchInst *LastCCBI = nullptr;
auto ClassType = getSelfInstanceType(SubType);
ClassDecl *CD = ClassType.getClassOrBoundGenericClass();
assert(CD && "Expected decl for class type!");
if (!CHA->hasKnownDirectSubclasses(CD)) {
// If there is only one possible alternative for this method,
// try to devirtualize it completely.
ClassHierarchyAnalysis::ClassList Subs;
if (isDefaultCaseKnown(CHA, AI, CD, Subs)) {
auto NewInst =
tryDevirtualizeClassMethod(pm, AI, SubTypeValue, CD, ClassType, &ORE)
.first;
if (NewInst)
deleteDevirtualizedApply(AI);
return bool(NewInst);
}
LLVM_DEBUG(llvm::dbgs() << "Inserting monomorphic speculative call for "
"class " << CD->getName() << "\n");
return !!speculateMonomorphicTarget(pm, AI, SubType, CD, ClassType, LastCCBI);
}
// True if any instructions were changed or generated.
bool Changed = false;
SmallVector<ClassDecl *, 8> Subs;
getAllSubclasses(CHA, CD, ClassType, M, Subs);
// Number of subclasses which cannot be handled by checked_cast_br checks.
int NotHandledSubsNum = 0;
if (Subs.size() > MaxNumSpeculativeTargets) {
LLVM_DEBUG(llvm::dbgs() << "Class " << CD->getName() << " has too many ("
<< Subs.size() << ") subclasses. Performing "
"speculative devirtualization only for the first "
<< MaxNumSpeculativeTargets << " of them.\n");
NotHandledSubsNum += (Subs.size() - MaxNumSpeculativeTargets);
Subs.erase(&Subs[MaxNumSpeculativeTargets], Subs.end());
}
LLVM_DEBUG(llvm::dbgs() << "Class " << CD->getName() << " is a superclass. "
"Inserting polymorphic speculative call.\n");
// Try to devirtualize the static class of instance
// if it is possible.
if (auto F = getTargetClassMethod(M, CD, ClassType, CMI)) {
// Do not devirtualize if a method in the base class is marked
// as non-optimizable. This way it is easy to disable the
// devirtualization of this method in the base class and
// any classes derived from it.
if (!F->shouldOptimize())
return false;
}
auto FirstAI =
speculateMonomorphicTarget(pm, AI, SubType, CD, ClassType, LastCCBI);
if (FirstAI) {
Changed = true;
AI = FirstAI;
}
// Perform a speculative devirtualization of a method invocation.
// It replaces an indirect class_method-based call by a code to perform
// a direct call of the method implementation based on the dynamic class
// of the instance.
//
// The code is generated according to the following principles:
//
// - For each direct subclass, a dedicated checked_cast_br instruction
// is generated to check if a dynamic class of the instance is exactly
// this subclass.
//
// - If this check succeeds, then it jumps to the code which performs a
// direct call of a method implementation specific to this subclass.
//
// - If this check fails, then a different subclass is checked by means of
// checked_cast_br in a similar way.
//
// - Finally, if the instance does not exactly match any of the direct
// subclasses, the "default" case code is generated, which should handle
// all remaining alternatives, i.e. it should be able to dispatch to any
// possible remaining method implementations. Typically this is achieved by
// using a class_method instruction, which performs an indirect invocation.
// But if it can be proven that only one specific implementation of
// a method will be always invoked by this code, then a class_method-based
// call can be devirtualized and replaced by a more efficient direct
// invocation of this specific method implementation.
//
// Remark: With the current implementation of a speculative devirtualization,
// if devirtualization of the "default" case is possible, then it would
// by construction directly invoke the implementation of the method
// corresponding to the static type of the instance. This may change
// in the future, if we start using PGO for ordering of checked_cast_br
// checks.
// TODO: The ordering of checks may benefit from using a PGO, because
// the most probable alternatives could be checked first.
for (auto S : Subs) {
LLVM_DEBUG(llvm::dbgs() << "Inserting a speculative call for class "
<< CD->getName() << " and subclass " << S->getName() << "\n");
// FIXME: Add support for generic subclasses.
if (S->isGenericContext()) {
++NotHandledSubsNum;
continue;
}
CanType CanClassType = S->getDeclaredInterfaceType()->getCanonicalType();
auto ClassOrMetatypeType = CanClassType;
if (auto MT = dyn_cast<MetatypeType>(SubType)) {
ClassOrMetatypeType = CanMetatypeType::get(CanClassType,
MT->getRepresentation());
}
// Pass the metatype of the subclass.
auto NewAI = speculateMonomorphicTarget(pm, AI, ClassOrMetatypeType, S,
CanClassType, LastCCBI);
if (!NewAI) {
++NotHandledSubsNum;
continue;
}
AI = NewAI;
Changed = true;
}
using namespace OptRemark;
// Check if there is only a single statically known implementation
// of the method which can be called by the default case handler.
if (NotHandledSubsNum || !isDefaultCaseKnown(CHA, AI, CD, Subs)) {
// Devirtualization of remaining cases is not possible,
// because more than one implementation of the method
// needs to be handled here. Thus, an indirect call through
// the class_method cannot be eliminated completely.
//
if (Changed)
ORE.emit([&]() {
RemarkPassed R("PartialSpecDevirt", *AI.getInstruction());
R << "Partially devirtualized call with run-time checks for "
<< NV("NumSubTypesChecked", Subs.size()) << " subclasses of "
<< NV("ClassType", ClassType);
if (NotHandledSubsNum)
R << ", number of subclasses not devirtualized: "
<< NV("NotHandledSubsNum", NotHandledSubsNum);
if (!isDefaultCaseKnown(CHA, AI, CD, Subs))
R << ", not all subclasses are known";
return R;
});
return Changed;
}
auto RB = [&]() {
return RemarkPassed("SpecDevirt", *AI.getInstruction())
<< "Devirtualized call with run-time checks for the derived classes "
"of " << NV("ClassType", ClassType);
};
// At this point it is known that there is only one remaining method
// implementation which is not covered by checked_cast_br checks yet.
// So, it is safe to replace a class_method invocation by
// a direct call of this remaining implementation.
if (LastCCBI && SubTypeValue == LastCCBI->getOperand()) {
// Remove last checked_cast_br, because it will always succeed.
SILBuilderWithScope B(LastCCBI);
auto CastedValue = B.createUncheckedReinterpretCast(
LastCCBI->getLoc(), LastCCBI->getOperand(),
LastCCBI->getTargetLoweredType());
B.createBranch(LastCCBI->getLoc(), LastCCBI->getSuccessBB(), {CastedValue});
LastCCBI->eraseFromParent();
ORE.emit(RB);
return true;
}
auto NewInst =
tryDevirtualizeClassMethod(pm, AI, SubTypeValue, CD, ClassType, nullptr)
.first;
if (NewInst) {
ORE.emit(RB);
deleteDevirtualizedApply(AI);
return true;
}
if (Changed)
ORE.emit(RB);
return Changed;
}
namespace {
/// Speculate the targets of virtual calls by assuming that the requested
/// class is at the bottom of the class hierarchy.
class SpeculativeDevirtualization : public SILFunctionTransform {
public:
~SpeculativeDevirtualization() override {}
void run() override {
auto &CurFn = *getFunction();
// Don't perform speculative devirtualization at -Os.
if (CurFn.optimizeForSize())
return;
// Don't speculatively devirtualize calls inside thunks.
if (CurFn.isThunk())
return;
ClassHierarchyAnalysis *CHA = PM->getAnalysis<ClassHierarchyAnalysis>();
bool Changed = false;
// Collect virtual calls that may be specialized.
SmallVector<FullApplySite, 16> ToSpecialize;
for (auto &BB : *getFunction()) {
for (auto II = BB.begin(), IE = BB.end(); II != IE; ++II) {
FullApplySite AI = FullApplySite::isa(&*II);
if (AI && isa<ClassMethodInst>(AI.getCallee()))
ToSpecialize.push_back(AI);
}
}
OptRemark::Emitter ORE(DEBUG_TYPE, CurFn);
// Go over the collected calls and try to insert speculative calls.
for (auto AI : ToSpecialize)
Changed |= tryToSpeculateTarget(getPassManager(), AI, CHA, ORE);
if (Changed) {
CurFn.getModule().linkFunction(&CurFn, SILModule::LinkingMode::LinkAll);
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
};
} // end anonymous namespace
SILTransform *swift::createSpeculativeDevirtualization() {
return new SpeculativeDevirtualization();
}