-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathLoadCopyToLoadBorrowOpt.cpp
399 lines (341 loc) · 14.8 KB
/
LoadCopyToLoadBorrowOpt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
//===--- LoadCopyToLoadBorrowOpt.cpp --------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Defines the main optimization that converts load [copy] -> load_borrow if we
/// can prove that the +1 is not actually needed and the memory loaded from is
/// never written to while the load [copy]'s object value is being used.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-semantic-arc-opts"
#include "OwnershipLiveRange.h"
#include "SemanticARCOptVisitor.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/LinearLifetimeChecker.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
using namespace swift::semanticarc;
//===----------------------------------------------------------------------===//
// Memory Analysis
//===----------------------------------------------------------------------===//
namespace {
/// A class that computes in a flow insensitive way if we can prove that our
/// storage is either never written to, or is initialized exactly once and never
/// written to again. In both cases, we can convert load [copy] -> load_borrow
/// safely.
class StorageGuaranteesLoadVisitor
: public AccessUseDefChainVisitor<StorageGuaranteesLoadVisitor> {
// The context that contains global state used across all semantic arc
// optimizations.
Context &ctx;
// The live range of the original load.
const OwnershipLiveRange &liveRange;
// The current address being visited.
SILValue currentAddress;
std::optional<bool> isWritten;
public:
StorageGuaranteesLoadVisitor(Context &context, LoadInst *load,
const OwnershipLiveRange &liveRange)
: ctx(context), liveRange(liveRange), currentAddress(load->getOperand()) {
}
void answer(bool written) {
currentAddress = nullptr;
isWritten = written;
}
void next(SILValue address) { currentAddress = address; }
void visitNestedAccess(BeginAccessInst *access) {
// First see if we have read/modify. If we do not, just look through the
// nested access.
switch (access->getAccessKind()) {
case SILAccessKind::Init:
case SILAccessKind::Deinit:
return next(access->getOperand());
case SILAccessKind::Read:
case SILAccessKind::Modify:
break;
}
// Next check if our live range is completely in the begin/end access
// scope. If so, we may be able to use a load_borrow here!
SmallVector<Operand *, 8> endScopeUses;
transform(access->getEndAccesses(), std::back_inserter(endScopeUses),
[](EndAccessInst *eai) { return &eai->getAllOperands()[0]; });
LinearLifetimeChecker checker(&ctx.getDeadEndBlocks());
if (!checker.validateLifetime(access, endScopeUses,
liveRange.getAllConsumingUses())) {
// If we fail the linear lifetime check, then just recur:
return next(access->getOperand());
}
// Otherwise, if we have read, then we are done!
if (access->getAccessKind() == SILAccessKind::Read) {
return answer(false);
}
// If we have a modify, check if our value is /ever/ written to. If it is
// never actually written to, then we convert to a load_borrow.
auto result = ctx.addressToExhaustiveWriteListCache.get(access);
if (!result.has_value()) {
return answer(true);
}
if (result.value().empty()) {
return answer(false);
}
return answer(true);
}
void visitArgumentAccess(SILFunctionArgument *arg) {
// If this load_copy is from an indirect in_guaranteed argument, then we
// know for sure that it will never be written to.
if (arg->hasConvention(SILArgumentConvention::Indirect_In_Guaranteed)) {
return answer(false);
}
// If we have an inout parameter that isn't ever actually written to, return
// false.
if (!arg->isIndirectResult() &&
arg->getArgumentConvention().isExclusiveIndirectParameter()) {
auto wellBehavedWrites = ctx.addressToExhaustiveWriteListCache.get(arg);
if (!wellBehavedWrites.has_value()) {
return answer(true);
}
// No writes.
if (wellBehavedWrites->empty()) {
return answer(false);
}
// Ok, we have some writes. See if any of them are within our live
// range. If any are, we definitely can not promote to load_borrow.
SmallVector<BeginAccessInst *, 16> foundBeginAccess;
LinearLifetimeChecker checker(&ctx.getDeadEndBlocks());
SILValue introducerValue = liveRange.getIntroducer().value;
SmallVector<Operand *, 4> consumingUses;
for (auto *op : liveRange.getDestroyingUses()) {
consumingUses.push_back(op);
}
for (auto *op : liveRange.getUnknownConsumingUses()) {
consumingUses.push_back(op);
}
if (!checker.usesNotContainedWithinLifetime(
introducerValue, consumingUses, *wellBehavedWrites)) {
return answer(true);
}
// Finally, check if our live range is strictly contained within any of
// our scoped writes.
SmallVector<Operand *, 16> endAccessList;
for (Operand *use : *wellBehavedWrites) {
auto *bai = dyn_cast<BeginAccessInst>(use->getUser());
if (!bai) {
continue;
}
endAccessList.clear();
llvm::transform(
bai->getUsersOfType<EndAccessInst>(),
std::back_inserter(endAccessList),
[](EndAccessInst *eai) { return &eai->getAllOperands()[0]; });
// We know that our live range is based on a load [copy], so we know
// that our value must have a defining inst.
auto *definingInst =
cast<LoadInst>(introducerValue->getDefiningInstruction());
// Then if our defining inst is not in our bai, endAccessList region, we
// know that the two ranges must be disjoint, so continue.
if (!checker.validateLifetime(bai, endAccessList,
&definingInst->getAllOperands()[0])) {
continue;
}
// Otherwise, we do have an overlap, return true.
return answer(true);
}
// Otherwise, there isn't an overlap, so we don't write to it.
return answer(false);
}
// TODO: This should be extended:
//
// 1. We should be able to analyze in arguments and see if they are only
// ever destroyed at the end of the function. In such a case, we may be
// able to also to promote load [copy] from such args to load_borrow.
return answer(true);
}
void visitGlobalAccess(SILValue global) {
return answer(
!AccessStorage(global, AccessStorage::Global).isLetAccess());
}
void visitClassAccess(RefElementAddrInst *field) {
currentAddress = nullptr;
// We know a let property won't be written to if the base object is
// guaranteed for the duration of the access.
// For non-let properties conservatively assume they may be written to.
if (!field->getField()->isLet()) {
return answer(true);
}
// The lifetime of the `let` is guaranteed if it's dominated by the
// guarantee on the base. See if we can find a single borrow introducer for
// this object. If we could not find a single such borrow introducer, assume
// that our property is conservatively written to.
SILValue baseObject = field->getOperand();
auto value = getSingleBorrowIntroducingValue(baseObject);
if (!value) {
return answer(true);
}
// Ok, we have a single borrow introducing value. First do a quick check if
// we have a non-local scope that is a function argument. In such a case, we
// know statically that our let can not be written to in the current
// function. To be conservative, assume that all other non-local scopes
// write to memory.
if (!value.isLocalScope()) {
if (value.kind == BorrowedValueKind::SILFunctionArgument) {
return answer(false);
}
// TODO: Once we model Coroutine results as non-local scopes, we should be
// able to return false here for them as well.
return answer(true);
}
// TODO: This is disabled temporarily for guaranteed phi args just for
// staging purposes. Thus be conservative and assume true in these cases.
if (value.kind == BorrowedValueKind::Phi) {
return answer(true);
}
// Ok, we now know that we have a local scope whose lifetime we need to
// analyze. With that in mind, gather up the lifetime ending uses of our
// borrow scope introducing value and then use the linear lifetime checker
// to check whether the copied value is dominated by the lifetime of the
// borrow it's based on.
SmallVector<Operand *, 4> endScopeInsts;
value.visitLocalScopeEndingUses(
[&](Operand *use) { endScopeInsts.push_back(use); return true; });
LinearLifetimeChecker checker(&ctx.getDeadEndBlocks());
// Returns true on success. So we invert.
bool foundError = !checker.validateLifetime(
baseObject, endScopeInsts, liveRange.getAllConsumingUses());
return answer(foundError);
}
// TODO: Handle other access kinds?
void visitBase(SILValue base, AccessStorage::Kind kind) {
return answer(true);
}
void visitNonAccess(SILValue addr) { return answer(true); }
void visitCast(SingleValueInstruction *cast, Operand *parentAddr) {
return next(parentAddr->get());
}
void visitStorageCast(SingleValueInstruction *projectedAddr,
Operand *parentAddr, AccessStorageCast cast) {
return next(parentAddr->get());
}
void visitAccessProjection(SingleValueInstruction *projectedAddr,
Operand *parentAddr) {
return next(parentAddr->get());
}
void visitPhi(SILPhiArgument *phi) {
// We shouldn't have address phis in OSSA SIL, so we don't need to recur
// through the predecessors here.
return answer(true);
}
/// See if we have an alloc_stack that is only written to once by an
/// initializing instruction.
void visitStackAccess(AllocStackInst *stack) {
// These will contain all of the address destroying operands that form the
// lifetime of the object. They may not be destroy_addr!
SmallVector<Operand *, 8> addrDestroyingOperands;
bool initialAnswer = isSingleInitAllocStack(stack, addrDestroyingOperands);
if (!initialAnswer)
return answer(true);
// Then make sure that all of our load [copy] uses are within the
// destroy_addr.
LinearLifetimeChecker checker(&ctx.getDeadEndBlocks());
// Returns true on success. So we invert.
bool foundError = !checker.validateLifetime(
stack, addrDestroyingOperands /*consuming users*/,
liveRange.getAllConsumingUses() /*non consuming users*/);
return answer(foundError);
}
bool doIt() {
while (currentAddress) {
visit(currentAddress);
}
return *isWritten;
}
};
} // namespace
static bool isWrittenTo(Context &ctx, LoadInst *load,
const OwnershipLiveRange &lr) {
StorageGuaranteesLoadVisitor visitor(ctx, load, lr);
return visitor.doIt();
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
bool SemanticARCOptVisitor::visitLoadInst(LoadInst *li) {
// This optimization can use more complex analysis. We should do some
// experiments before enabling this by default as a guaranteed optimization.
if (ctx.onlyMandatoryOpts)
return false;
// If we are not supposed to perform this transform, bail.
if (!ctx.shouldPerform(ARCTransformKind::LoadCopyToLoadBorrowPeephole))
return false;
if (li->getOwnershipQualifier() != LoadOwnershipQualifier::Copy)
return false;
// Ok, we have our load [copy]. Try to optimize considering its live range.
if (performLoadCopyToLoadBorrowOptimization(li, li))
return true;
// Check whether the load [copy]'s only use is as an operand to a move_value.
auto *use = li->getSingleUse();
if (!use)
return false;
auto *mvi = dyn_cast<MoveValueInst>(use->getUser());
if (!mvi)
return false;
// Try to optimize considering the move_value's live range.
return performLoadCopyToLoadBorrowOptimization(li, mvi);
}
// Convert a load [copy] from unique storage [read] whose representative
// (either the load [copy] itself or a move from it) has all uses that can
// accept a guaranteed parameter to a load_borrow.
bool SemanticARCOptVisitor::performLoadCopyToLoadBorrowOptimization(
LoadInst *li, SILValue original) {
assert(li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy);
assert(li == original || li->getSingleUse()->getUser() ==
cast<SingleValueInstruction>(original));
// Make sure its value is truly a dead live range implying it is only ever
// consumed by destroy_value instructions. If it is consumed, we need to pass
// off a +1 value, so bail.
//
// FIXME: We should consider if it is worth promoting a load [copy]
// -> load_borrow if we can put a copy_value on a cold path and thus
// eliminate RR traffic on a hot path.
OwnershipLiveRange lr(original);
if (bool(lr.hasUnknownConsumingUse()))
return false;
// Then check if our address is ever written to. If it is, then we cannot use
// the load_borrow because the stored value may be released during the loaded
// value's live range.
if (isWrittenTo(ctx, li, lr) ||
(li != original && isWrittenTo(ctx, li, OwnershipLiveRange(li))))
return false;
// Ok, we can perform our optimization. Convert the load [copy] into a
// load_borrow.
auto *lbi =
SILBuilderWithScope(li).createLoadBorrow(li->getLoc(), li->getOperand());
lr.insertEndBorrowsAtDestroys(lbi, getDeadEndBlocks(), ctx.lifetimeFrontier);
SILValue replacement = lbi;
if (original != li) {
getCallbacks().eraseAndRAUWSingleValueInst(li, lbi);
auto *bbi = SILBuilderWithScope(cast<SingleValueInstruction>(original))
.createBeginBorrow(li->getLoc(), lbi,
IsLexical_t(original->isLexical()));
replacement = bbi;
lr.insertEndBorrowsAtDestroys(bbi, getDeadEndBlocks(),
ctx.lifetimeFrontier);
}
std::move(lr).convertToGuaranteedAndRAUW(replacement, getCallbacks());
return true;
}