-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathCOWArrayOpt.cpp
1108 lines (980 loc) · 40.3 KB
/
COWArrayOpt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- COWArrayOpt.cpp - Optimize Copy-On-Write Array Checks ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// Optimize CoW array access by hoisting uniqueness checks.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "cowarray-opts"
#include "ArrayOpt.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/LoopInfo.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/ColdBlockInfo.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
// Do the two values \p A and \p B reference the same 'array' after potentially
// looking through a load. To identify a common array address this functions
// strips struct projections until it hits \p ArrayAddress.
bool areArraysEqual(RCIdentityFunctionInfo *RCIA, SILValue A, SILValue B,
SILValue ArrayAddress) {
A = RCIA->getRCIdentityRoot(A);
B = RCIA->getRCIdentityRoot(B);
if (A == B)
return true;
// We have stripped off struct_extracts. Remove the load to look at the
// address we are loading from.
if (isa<LoadInst>(A) || isa<LoadBorrowInst>(A))
A = cast<SingleValueInstruction>(A)->getOperand(0);
if (isa<LoadInst>(B) || isa<LoadBorrowInst>(B))
B = cast<SingleValueInstruction>(B)->getOperand(0);
// Strip off struct_extract_refs until we hit array address.
if (ArrayAddress) {
StructElementAddrInst *SEAI = nullptr;
while (A != ArrayAddress && (SEAI = dyn_cast<StructElementAddrInst>(A)))
A = SEAI->getOperand();
while (B != ArrayAddress && (SEAI = dyn_cast<StructElementAddrInst>(B)))
B = SEAI->getOperand();
}
return A == B;
}
namespace {
/// Optimize Copy-On-Write array checks based on high-level semantics.
///
/// Performs an analysis on all Array users to ensure they do not interfere
/// with make_mutable hoisting. Ultimately, the only thing that can interfere
/// with make_mutable is a retain of the array. To ensure no retains occur
/// within the loop, it is necessary to check that the array does not escape on
/// any path reaching the loop, and that it is not directly retained within the
/// loop itself.
///
/// In some cases, a retain does exist within the loop, but is balanced by a
/// release or call to @owned. The analysis must determine whether any array
/// mutation can occur between the retain and release. To accomplish this it
/// relies on knowledge of all array operations within the loop. If the array
/// escapes in some way that cannot be tracked, the analysis must fail.
///
/// TODO: Handle this pattern:
/// retain(array)
/// call(array)
/// release(array)
/// Whenever the call is readonly, has balanced retain/release for the array,
/// and does not capture the array. Under these conditions, the call can neither
/// mutate the array nor save an alias for later mutation.
///
/// TODO: Completely eliminate make_mutable calls if all operations that the
/// guard are already guarded by either "init" or "mutate_unknown".
class COWArrayOpt {
typedef StructUseCollector::UserList UserList;
typedef StructUseCollector::UserOperList UserOperList;
RCIdentityFunctionInfo *RCIA;
SILFunction *Function;
SILLoop *Loop;
std::optional<SmallVector<SILBasicBlock *, 8>> LoopExitingBlocks;
SILBasicBlock *Preheader;
DominanceInfo *DomTree;
bool HasChanged = false;
// Keep track of cold blocks.
ColdBlockInfo ColdBlocks;
// Cache of the analysis whether a loop is safe wrt.std::make_unique hoisting by
// looking at the operations (no uniquely identified objects).
std::pair<bool, bool> CachedSafeLoop;
// Set of all blocks that may reach the loop, not including loop blocks.
BasicBlockSet ReachingBlocks;
bool reachingBlocksComputed = false;
/// Transient per-Array user set.
///
/// Track all known array users with the exception of struct_extract users
/// (checkSafeArrayElementUse prohibits struct_extract users from mutating the
/// array). During analysis of retains/releases within the loop body, the
/// users in this set are assumed to cover all possible mutating operations on
/// the array. If the array escaped through an unknown use, the analysis must
/// abort earlier.
SmallPtrSet<SILInstruction*, 8> ArrayUserSet;
/// Array loads which can be hoisted because a make_mutable of that array
/// was hoisted previously.
/// This is important to handle the two dimensional array case.
SmallPtrSet<LoadInst *, 4> HoistableLoads;
// When matching retains to releases we must not match the same release twice.
//
// For example we could have:
// retain %a // id %1
// retain %a // id %2
// release %a // id %3
// When we match %1 with %3, we can't match %3 again when we look for a
// matching release for %2.
// The set refers to operands instead of instructions because an apply could
// have several operands with release semantics.
SmallPtrSet<Operand*, 8> MatchedReleases;
// The address of the array passed to the current make_mutable we are
// analyzing.
SILValue CurrentArrayAddr;
public:
COWArrayOpt(RCIdentityFunctionInfo *RCIA, SILLoop *L, DominanceAnalysis *DA,
PostDominanceAnalysis *PDA)
: RCIA(RCIA), Function(L->getHeader()->getParent()), Loop(L),
Preheader(L->getLoopPreheader()), DomTree(DA->get(Function)),
ColdBlocks(DA, PDA), CachedSafeLoop(false, false), ReachingBlocks(Function) {
ColdBlocks.analyze(Function);
}
bool run();
private:
bool checkUniqueArrayContainer(SILValue ArrayContainer);
BasicBlockSet &getReachingBlocks();
bool isRetainReleasedBeforeMutate(SILInstruction *RetainInst,
bool IsUniquelyIdentifiedArray = true);
bool checkSafeArrayAddressUses(UserList &AddressUsers);
bool checkSafeArrayValueUses(UserList &ArrayValueUsers);
bool checkSafeArrayElementUse(SILInstruction *UseInst, SILValue ArrayVal);
bool checkSafeElementValueUses(UserOperList &ElementValueUsers);
bool hoistMakeMutable(ArraySemanticsCall MakeMutable, bool dominatesExits);
bool dominatesExitingBlocks(SILBasicBlock *BB);
void hoistAddressProjections(Operand &ArrayOp);
bool hasLoopOnlyDestructorSafeArrayOperations();
SILValue getArrayAddressBase(SILValue V);
/// \return true if the \p inst releases the value retained by \p retainInst
bool isMatchingRelease(SILInstruction *inst, SILInstruction *retainInst);
static bool isRetain(SILInstruction *inst) {
if (auto *load = dyn_cast<LoadInst>(inst)) {
if (load->getOwnershipQualifier() == LoadOwnershipQualifier::Copy)
return true;
}
return isa<RetainValueInst>(inst) || isa<StrongRetainInst>(inst) ||
isa<CopyValueInst>(inst);
}
static bool isRelease(SILInstruction *inst) {
return isa<ReleaseValueInst>(inst) || isa<StrongReleaseInst>(inst) ||
isa<DestroyValueInst>(inst);
}
static SILValue getRetainedValue(SILInstruction *inst) {
assert(isRetain(inst));
if (isa<RetainValueInst>(inst) || isa<StrongRetainInst>(inst))
return inst->getOperand(0);
return cast<SingleValueInstruction>(inst);
}
ArrayRef<SILBasicBlock *> getLoopExitingBlocks() const {
if (!LoopExitingBlocks) {
auto *self = const_cast<COWArrayOpt *>(this);
self->LoopExitingBlocks.emplace();
Loop->getExitingBlocks(*self->LoopExitingBlocks);
}
return *LoopExitingBlocks;
}
};
} // end anonymous namespace
bool COWArrayOpt::isMatchingRelease(SILInstruction *inst,
SILInstruction *retainInst) {
// Before we can match a release with a retain we need to check that we have
// not already matched the release with a retain we processed earlier.
// We don't want to match the release with both retains in the example below.
//
// retain %a <--|
// retain %a | Match. <-| Don't match.
// release %a <--| <-|
//
if (isRelease(inst)) {
if (!MatchedReleases.count(&inst->getOperandRef(0))) {
if (areArraysEqual(RCIA, inst->getOperand(0),
getRetainedValue(retainInst), CurrentArrayAddr)) {
LLVM_DEBUG(llvm::dbgs() << " matching with release " << *inst);
MatchedReleases.insert(&inst->getOperandRef(0));
return true;
}
}
}
LLVM_DEBUG(llvm::dbgs() << " not a matching release " << *inst);
return false;
}
/// \return true of the given container is known to be a unique copy of the
/// array with no aliases. Cases we check:
///
/// (1) An @inout argument.
///
/// (2) A local variable, which may be copied from a by-val argument,
/// initialized directly, or copied from a function return value. We don't
/// need to check how it is initialized here, because that will show up as a
/// store to the local's address. checkSafeArrayAddressUses will check that the
/// store is a simple initialization outside the loop.
bool COWArrayOpt::checkUniqueArrayContainer(SILValue ArrayContainer) {
if (auto *Arg = dyn_cast<SILArgument>(ArrayContainer)) {
// Check that the argument is passed as an inout type. This means there are
// no aliases accessible within this function scope.
auto Params = Function->getLoweredFunctionType()->getParameters();
ArrayRef<SILArgument *> FunctionArgs = Function->begin()->getArguments();
for (unsigned ArgIdx = 0, ArgEnd = Params.size();
ArgIdx != ArgEnd; ++ArgIdx) {
if (FunctionArgs[ArgIdx] != Arg)
continue;
if (!Params[ArgIdx].isIndirectInOut()) {
LLVM_DEBUG(llvm::dbgs()
<< " Skipping Array: Not an inout argument!\n");
return false;
}
}
return true;
}
else if (isa<AllocStackInst>(ArrayContainer))
return true;
if (auto *LI = dyn_cast<LoadInst>(ArrayContainer)) {
// A load of another array, which follows a make_mutable, also guarantees
// a unique container. This is the case if the current array is an element
// of the outer array in nested arrays.
if (HoistableLoads.count(LI) != 0)
return true;
}
// TODO: we should also take advantage of access markers to identify
// unique arrays.
LLVM_DEBUG(llvm::dbgs()
<< " Skipping Array: Not an argument or local variable!\n");
return false;
}
/// Lazily compute blocks that may reach the loop.
BasicBlockSet &COWArrayOpt::getReachingBlocks() {
if (!reachingBlocksComputed) {
SmallVector<SILBasicBlock*, 8> Worklist;
ReachingBlocks.insert(Preheader);
Worklist.push_back(Preheader);
while (!Worklist.empty()) {
SILBasicBlock *BB = Worklist.pop_back_val();
for (auto PI = BB->pred_begin(), PE = BB->pred_end(); PI != PE; ++PI) {
if (ReachingBlocks.insert(*PI))
Worklist.push_back(*PI);
}
}
reachingBlocksComputed = true;
}
return ReachingBlocks;
}
/// \return true if the instruction is a call to a non-mutating array semantic
/// function.
static bool isNonMutatingArraySemanticCall(SILInstruction *Inst) {
ArraySemanticsCall Call(Inst);
if (!Call)
return false;
switch (Call.getKind()) {
case ArrayCallKind::kNone:
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
case ArrayCallKind::kGetElement:
case ArrayCallKind::kGetElementAddress:
case ArrayCallKind::kEndMutation:
return true;
case ArrayCallKind::kMakeMutable:
case ArrayCallKind::kMutateUnknown:
case ArrayCallKind::kReserveCapacityForAppend:
case ArrayCallKind::kWithUnsafeMutableBufferPointer:
case ArrayCallKind::kArrayInit:
case ArrayCallKind::kArrayInitEmpty:
case ArrayCallKind::kArrayUninitialized:
case ArrayCallKind::kArrayUninitializedIntrinsic:
case ArrayCallKind::kArrayFinalizeIntrinsic:
case ArrayCallKind::kAppendContentsOf:
case ArrayCallKind::kAppendElement:
return false;
}
llvm_unreachable("Unhandled ArrayCallKind in switch.");
}
/// \return true if the given retain instruction is followed by a release on the
/// same object prior to any potential mutating operation.
bool COWArrayOpt::isRetainReleasedBeforeMutate(SILInstruction *RetainInst,
bool IsUniquelyIdentifiedArray) {
// If a retain is found outside the loop ignore it. Otherwise, it must
// have a matching @owned call.
if (!Loop->contains(RetainInst))
return true;
LLVM_DEBUG(llvm::dbgs() << " Looking at retain " << *RetainInst);
// Walk forward looking for a release of ArrayLoad or element of
// ArrayUserSet. Note that ArrayUserSet does not included uses of elements
// within the Array. Consequently, checkSafeArrayElementUse must prove that
// no uses of the Array value, or projections of it can lead to mutation
// (element uses may only be retained/released).
for (auto II = std::next(SILBasicBlock::iterator(RetainInst)),
IE = RetainInst->getParent()->end(); II != IE; ++II) {
if (isMatchingRelease(&*II, RetainInst))
return true;
if (isRetain(&*II))
continue;
// A side effect free instruction cannot mutate the array.
if (!II->mayHaveSideEffects())
continue;
// Non mutating array calls are safe.
if (isNonMutatingArraySemanticCall(&*II))
continue;
// borrows are safe
if (isa<BeginBorrowInst>(II) || isa<EndBorrowInst>(II))
continue;
if (IsUniquelyIdentifiedArray) {
// It is okay for an identified loop to have releases in between a retain
// and a release. We can end up here if we have two retains in a row and
// then a release. The second retain cannot be matched with the release
// but must be matched by a follow up instruction.
// retain %ptr
// retain %ptr
// release %ptr
// array_operation(..., @owned %ptr)
//
// This is not the case for a potentially aliased array because a release
// can cause a destructor to run. The destructor in turn can cause
// arbitrary side effects.
if (isRelease(&*II))
continue;
if (ArrayUserSet.count(&*II)) // May be an array mutation.
break;
} else {
// Not safe.
break;
}
}
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: retained in loop!\n"
<< " " << *RetainInst);
return false;
}
/// \return true if all given users of an array address are safe to hoist
/// make_mutable across.
///
/// General calls are unsafe because they may copy the array struct which in
/// turn bumps the reference count of the array storage.
///
/// The same logic currently applies to both uses of the array struct itself and
/// uses of an aggregate containing the array.
///
/// This does not apply to addresses of elements within the array. e.g. it is
/// not safe to store to an element in the array because we may be storing an
/// alias to the array storage.
bool COWArrayOpt::checkSafeArrayAddressUses(UserList &AddressUsers) {
for (auto *UseInst : AddressUsers) {
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
if (ArraySemanticsCall(AI))
continue;
// Check of this escape can reach the current loop.
if (!Loop->contains(UseInst->getParent()) &&
!getReachingBlocks().contains(UseInst->getParent())) {
continue;
}
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: may escape "
"through call!\n"
<< " " << *UseInst);
return false;
}
if (isRetain(UseInst) && isRetainReleasedBeforeMutate(UseInst)) {
continue;
}
if (auto *LdInst = dyn_cast<LoadInst>(UseInst)) {
if (LdInst->getOwnershipQualifier() != LoadOwnershipQualifier::Copy)
continue;
}
if (auto *StInst = dyn_cast<StoreInst>(UseInst)) {
// Allow a local array to be initialized outside the loop via a by-value
// argument or return value. The array value may be returned by its
// initializer or some other factory function.
if (Loop->contains(StInst->getParent())) {
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: store inside loop!\n"
<< " " << *StInst);
return false;
}
SILValue InitArray = StInst->getSrc();
if (isa<SILArgument>(InitArray) || isa<ApplyInst>(InitArray))
continue;
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: may escape "
"through store!\n"
<< " " << *UseInst);
return false;
}
if (isa<LoadBorrowInst>(UseInst)) {
continue;
}
if (isa<DeallocStackInst>(UseInst)) {
// Handle destruction of a local array.
continue;
}
if (isa<MarkDependenceInst>(UseInst)) {
continue;
}
if (UseInst->isDebugInstruction()) {
continue;
}
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Array use!\n"
<< " " << *UseInst);
// Found an unsafe or unknown user. The Array may escape here.
return false;
}
return true;
}
template <typename UserRange>
ArraySemanticsCall getEndMutationCall(const UserRange &AddressUsers) {
for (auto *UseInst : AddressUsers) {
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
ArraySemanticsCall ASC(AI);
if (ASC.getKind() == ArrayCallKind::kEndMutation)
return ASC;
}
}
return ArraySemanticsCall();
}
/// Returns true if this instruction is a safe array use if all of its users are
/// also safe array users.
static std::optional<SILInstructionResultArray>
isTransitiveSafeUser(SILInstruction *I) {
switch (I->getKind()) {
case SILInstructionKind::StructExtractInst:
case SILInstructionKind::TupleExtractInst:
case SILInstructionKind::DestructureStructInst:
case SILInstructionKind::DestructureTupleInst:
case SILInstructionKind::UncheckedEnumDataInst:
case SILInstructionKind::StructInst:
case SILInstructionKind::TupleInst:
case SILInstructionKind::EnumInst:
case SILInstructionKind::UncheckedRefCastInst:
case SILInstructionKind::UncheckedBitwiseCastInst:
case SILInstructionKind::BeginBorrowInst:
return I->getResults();
default:
return std::nullopt;
}
}
/// Check that the use of an Array value, the value of an aggregate containing
/// an array, or the value of an element within the array, is safe w.r.t
/// make_mutable hoisting. Retains are safe as long as they are not inside the
/// Loop.
bool COWArrayOpt::checkSafeArrayValueUses(UserList &ArrayValueUsers) {
for (auto *UseInst : ArrayValueUsers) {
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
if (ArraySemanticsCall(AI))
continue;
// Found an unsafe or unknown user. The Array may escape here.
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unsafe call!\n"
<< " " << *UseInst);
return false;
}
/// Is this a unary transitive safe user instruction. This means that the
/// instruction is safe only if all of its users are safe. Check this
/// recursively.
auto results = isTransitiveSafeUser(UseInst);
if (results.has_value()) {
for (auto result : results.value()) {
if (!std::all_of(result->use_begin(), result->use_end(),
[this](Operand *Op) -> bool {
return checkSafeArrayElementUse(Op->getUser(),
Op->get());
}))
return false;
}
continue;
}
if (isRetain(UseInst)) {
if (isRetainReleasedBeforeMutate(UseInst))
continue;
// Found an unsafe or unknown user. The Array may escape here.
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: found unmatched retain "
"value!\n"
<< " " << *UseInst);
return false;
}
if (isRelease(UseInst)) {
// Releases are always safe. This case handles the release of an array
// buffer that is loaded from a local array struct.
continue;
}
if (isa<MarkDependenceInst>(UseInst))
continue;
if (isa<EndBorrowInst>(UseInst))
continue;
if (UseInst->isDebugInstruction())
continue;
// Found an unsafe or unknown user. The Array may escape here.
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unsafe Array value use!\n"
<< " " << *UseInst);
return false;
}
return true;
}
/// Given an array value, recursively check that uses of elements within the
/// array are safe.
///
/// Consider any potentially mutating operation unsafe. Mutation would not
/// prevent make_mutable hoisting, but it would interfere with
/// isRetainReleasedBeforeMutate. Since struct_extract users are not visited by
/// StructUseCollector, they are never added to ArrayUserSet. Thus we check here
/// that no mutating struct_extract users exist.
///
/// After the lower aggregates pass, SIL contains chains of struct_extract and
/// retain_value instructions. e.g.
/// %a = load %0 : $*Array<Int>
/// %b = struct_extract %a : $Array<Int>, #Array._buffer
/// %s = struct_extract %b : $_ArrayBuffer<Int>, #_ArrayBuffer.storage
/// retain_value %s : $Optional<Builtin.NativeObject>
///
/// SILCombine typically simplifies this by bypassing the
/// struct_extract. However, for completeness this analysis has the ability to
/// follow struct_extract users.
///
/// Since this does not recurse through multi-operand instructions, no visited
/// set is necessary.
bool COWArrayOpt::checkSafeArrayElementUse(SILInstruction *UseInst,
SILValue ArrayVal) {
if (isRetain(UseInst) && isRetainReleasedBeforeMutate(UseInst))
return true;
// Releases are always safe. This case handles the release of an array
// buffer that is loaded from a local array struct.
if (isRelease(UseInst))
return true;
if (isa<RefTailAddrInst>(UseInst)) {
return true;
}
// Look for a safe mark_dependence instruction use.
//
// This use looks something like:
//
// %57 = load %56 : $*Builtin.BridgeObject from Array<Int>
// %58 = unchecked_ref_cast %57 : $Builtin.BridgeObject to
// $_ContiguousArray
// %59 = unchecked_ref_cast %58 : $__ContiguousArrayStorageBase to
// $Builtin.NativeObject
// %60 = struct_extract %53 : $UnsafeMutablePointer<Int>,
// #UnsafeMutablePointer
// %61 = pointer_to_address %60 : $Builtin.RawPointer to strict $*Int
// %62 = mark_dependence %61 : $*Int on %59 : $Builtin.NativeObject
//
// The struct_extract, unchecked_ref_cast is handled below in the
// "Transitive SafeArrayElementUse" code.
if (isa<MarkDependenceInst>(UseInst))
return true;
if (isa<EndBorrowInst>(UseInst))
return true;
if (UseInst->isDebugInstruction())
return true;
// If this is an instruction which is a safe array element use if and only if
// all of its users are safe array element uses, recursively check its uses
// and return false if any of them are not transitive escape array element
// uses.
auto results = isTransitiveSafeUser(UseInst);
if (results.has_value()) {
for (auto result : results.value()) {
if (!std::all_of(result->use_begin(), result->use_end(),
[this](Operand *Op) -> bool {
return checkSafeArrayElementUse(Op->getUser(),
Op->get());
}))
return false;
}
return true;
}
// Found an unsafe or unknown user. The Array may escape here.
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Element use!\n"
<< *UseInst);
return false;
}
/// Check that the use of an Array element is safe w.r.t. make_mutable hoisting.
///
/// This logic should be similar to checkSafeArrayElementUse
bool COWArrayOpt::checkSafeElementValueUses(UserOperList &ElementValueUsers) {
for (auto &Pair : ElementValueUsers) {
SILInstruction *UseInst = Pair.first;
Operand *ArrayValOper = Pair.second;
if (!checkSafeArrayElementUse(UseInst, ArrayValOper->get()))
return false;
}
return true;
}
/// Check if a loop has only 'safe' array operations such that we can hoist the
/// uniqueness check even without having an 'identified' object.
///
/// 'Safe' array operations are:
/// * all array semantic functions
/// * stores to array elements
/// * any instruction that does not have side effects.
/// * any retain must be matched by a release before we hit astd::make_unique.
///
/// Note, that a release in this modus (we don't have a uniquely identified
/// object) is not safe because the destructor of what we are releasing might
/// be unsafe (creating a reference).
///
bool COWArrayOpt::hasLoopOnlyDestructorSafeArrayOperations() {
if (CachedSafeLoop.first)
return CachedSafeLoop.second;
assert(!CachedSafeLoop.second &&
"We only move to a true state below");
// We will compute the state of this loop now.
CachedSafeLoop.first = true;
// We need to cleanup the MatchedRelease on return.
auto ReturnWithCleanup = [&] (bool LoopHasSafeOperations) {
MatchedReleases.clear();
return LoopHasSafeOperations;
};
LLVM_DEBUG(llvm::dbgs() << " checking whether loop only has safe array "
"operations ...\n");
CanType SameTy;
for (auto *BB : Loop->getBlocks()) {
for (auto &It : *BB) {
auto *Inst = &It;
LLVM_DEBUG(llvm::dbgs() << " visiting: " << *Inst);
// Semantic calls are safe.
ArraySemanticsCall Sem(Inst);
if (Sem && Sem.hasSelf()) {
auto Kind = Sem.getKind();
// Safe because they create new arrays.
if (Kind == ArrayCallKind::kArrayInit ||
Kind == ArrayCallKind::kArrayInitEmpty ||
Kind == ArrayCallKind::kArrayUninitialized ||
Kind == ArrayCallKind::kArrayUninitializedIntrinsic)
continue;
// All array types must be the same. This is a stronger guaranteed than
// we actually need. The requirement is that we can't create another
// reference to the array by performing an array operation: for example,
// storing or appending one array into a two-dimensional array.
// Checking
// that all types are the same make guarantees that this cannot happen.
if (SameTy.isNull()) {
SameTy = Sem.getSelf()->getType().getASTType();
continue;
}
if (Sem.getSelf()->getType().getASTType() != SameTy) {
LLVM_DEBUG(llvm::dbgs() << " (NO) mismatching array types\n");
return ReturnWithCleanup(false);
}
// Safe array semantics operation.
continue;
}
// Stores to array elements.
if (auto *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
LLVM_DEBUG(llvm::dbgs() << " (NO) store with [assign]" << *SI);
return ReturnWithCleanup(false);
}
if (isAddressOfArrayElement(SI->getDest()))
continue;
LLVM_DEBUG(llvm::dbgs() << " (NO) unknown store " << *SI);
return ReturnWithCleanup(false);
}
// Instructions without side effects are safe.
if (!Inst->mayHaveSideEffects())
continue;
if (isa<CondFailInst>(Inst))
continue;
if (isa<AllocationInst>(Inst) || isa<DeallocStackInst>(Inst))
continue;
if (isRetain(Inst) && isRetainReleasedBeforeMutate(Inst, false)) {
continue;
}
// If the instruction is a matched release we can ignore it.
if (isRelease(Inst)) {
if (MatchedReleases.count(&Inst->getOperandRef(0)))
continue;
}
// Ignore fix_lifetime. It cannot increment ref counts.
if (isa<FixLifetimeInst>(Inst))
continue;
// Ignore begin_borrow/end_borrow, they do not effect ref counts
if (isa<BeginBorrowInst>(Inst) || isa<EndBorrowInst>(Inst))
continue;
LLVM_DEBUG(llvm::dbgs() << " (NO) unknown operation " << *Inst);
return ReturnWithCleanup(false);
}
}
LLVM_DEBUG(llvm::dbgs() << " (YES)\n");
CachedSafeLoop.second = true;
return ReturnWithCleanup(true);
}
/// Return the underlying Array address after stripping off all address
/// projections. Returns an invalid SILValue if the array base does not dominate
/// the loop.
// TODO: Support begin_borrow here
SILValue COWArrayOpt::getArrayAddressBase(SILValue V) {
while (true) {
V = stripSinglePredecessorArgs(V);
if (auto *RefCast = dyn_cast<UncheckedRefCastInst>(V)) {
V = RefCast->getOperand();
continue;
}
if (auto *SE = dyn_cast<StructExtractInst>(V)) {
V = SE->getOperand();
continue;
}
if (auto *IA = dyn_cast<IndexAddrInst>(V)) {
// index_addr is the only projection which has a second operand: the index.
// Check if the index is loop invariant.
SILBasicBlock *IndexBlock = IA->getIndex()->getParentBlock();
if (IndexBlock && !DomTree->dominates(IndexBlock, Preheader))
return SILValue();
V = IA->getBase();
continue;
}
if (!Projection::isAddressProjection(V))
break;
auto *Inst = cast<SingleValueInstruction>(V);
if (Inst->getNumOperands() > 1)
break;
V = Inst->getOperand(0);
}
if (auto *LI = dyn_cast<LoadInst>(V)) {
if (HoistableLoads.count(LI) != 0)
return V;
}
SILBasicBlock *ArrayAddrBaseBB = V->getParentBlock();
if (ArrayAddrBaseBB && !DomTree->dominates(ArrayAddrBaseBB, Preheader))
return SILValue();
return V;
}
/// Hoist the address projection rooted in \p Op to \p InsertBefore.
/// Requires the projected value to dominate the insertion point.
///
/// Will look through single basic block predecessor arguments.
// TODO: Support hoisting of begin_borrow and create end_borrow at appropriate
// lifetime endpoints
void COWArrayOpt::hoistAddressProjections(Operand &ArrayOp) {
SILValue V = ArrayOp.get();
SILInstruction *Prev = nullptr;
SILInstruction *InsertPt = Preheader->getTerminator();
while (true) {
SILValue Incoming = stripSinglePredecessorArgs(V);
// Forward the incoming arg from a single predecessor.
if (V != Incoming) {
if (V == ArrayOp.get()) {
// If we are the operand itself set the operand to the incoming
// argument.
ArrayOp.set(Incoming);
V = Incoming;
} else {
// Otherwise, set the previous projections operand to the incoming
// argument.
assert(Prev && "Must have seen a projection");
Prev->setOperand(0, Incoming);
V = Incoming;
}
}
switch (V->getKind()) {
case ValueKind::LoadInst:
case ValueKind::StructElementAddrInst:
case ValueKind::TupleElementAddrInst:
case ValueKind::RefElementAddrInst:
case ValueKind::RefTailAddrInst:
case ValueKind::UncheckedRefCastInst:
case ValueKind::StructExtractInst:
case ValueKind::IndexAddrInst:
case ValueKind::UncheckedTakeEnumDataAddrInst: {
auto *Inst = cast<SingleValueInstruction>(V);
// We are done once the current projection dominates the insert point.
if (DomTree->dominates(Inst->getParent(), Preheader))
return;
assert(!isa<LoadInst>(V) || HoistableLoads.count(cast<LoadInst>(V)) != 0);
// Move the current projection and memorize it for the next iteration.
Prev = Inst;
Inst->moveBefore(InsertPt);
InsertPt = Inst;
V = Inst->getOperand(0);
continue;
}
default:
assert(DomTree->dominates(V->getParentBlock(), Preheader) &&
"The projected value must dominate the insertion point");
return;
}
}
}
/// Check if this call to "make_mutable" is hoistable, and copy it, along with
/// the corresponding end_mutation call, to the loop pre-header.
///
/// The original make_mutable/end_mutation calls remain in the loop, because
/// removing them would violate the COW representation rules.
/// Having those calls in the pre-header will then enable COWOpts (after
/// inlining) to constant fold the uniqueness check of the begin_cow_mutation
/// in the loop.
bool COWArrayOpt::hoistMakeMutable(ArraySemanticsCall MakeMutable,
bool dominatesExits) {
LLVM_DEBUG(llvm::dbgs() << " Checking mutable array: " <<CurrentArrayAddr);
// We can hoist address projections (even if they are only conditionally
// executed).
SILValue ArrayAddrBase = getArrayAddressBase(CurrentArrayAddr);
if (!ArrayAddrBase) {
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: does not dominate loop!\n");
return false;
}
SmallVector<int, 4> AccessPath;
SILValue ArrayContainer =
StructUseCollector::getAccessPath(CurrentArrayAddr, AccessPath);
bool arrayContainerIsUnique = checkUniqueArrayContainer(ArrayContainer);
StructUseCollector StructUses;
// Check whether we can hoist make_mutable based on the operations that are
// in the loop.
//
// Hoisting make_mutable releases the original array storage. If an alias of
// that storage is accessed on any path reachable from the loop header that
// doesn't already pass through the make_mutable, then hoisting is
// illegal. hasLoopOnlyDestructorSafeArrayOperations checks that the array
// storage is not accessed within the loop. However, this does not include
// paths exiting the loop. Rather than analyzing code outside the loop, simply
// check that the original make_mutable dominates all exits. The test
// SILOptimizer/cowarray_opt.sil: dont_hoist_if_executed_conditionally shows
// the problem.
if (hasLoopOnlyDestructorSafeArrayOperations() && dominatesExits) {
// Done. We can hoist the make_mutable.
// We still need the array uses later to check if we can add loads to
// HoistableLoads.
StructUses.collectUses(ArrayContainer, AccessPath);
} else {
// There are some unsafe operations in the loop. If the array is uniquely
// identifiable and not escaping, then we are good if all the array uses
// are safe.
if (!arrayContainerIsUnique) {
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: is not unique!\n");
return false;
}
// Check that the Array is not retained with this loop and it's address does
// not escape within this function.
StructUses.collectUses(ArrayContainer, AccessPath);
for (auto *Oper : StructUses.Visited)
ArrayUserSet.insert(Oper->getUser());
if (!checkSafeArrayAddressUses(StructUses.AggregateAddressUsers) ||
!checkSafeArrayAddressUses(StructUses.StructAddressUsers) ||
!checkSafeArrayValueUses(StructUses.StructValueUsers) ||
!checkSafeElementValueUses(StructUses.ElementValueUsers) ||
!StructUses.ElementAddressUsers.empty())
return false;
}
auto ArrayUsers = llvm::map_range(MakeMutable.getSelf()->getUses(),
ValueBase::UseToUser());
// There should be a call to end_mutation. Find it so that we can copy it to
// the pre-header.
ArraySemanticsCall EndMutation = getEndMutationCall(ArrayUsers);
if (!EndMutation) {
EndMutation = getEndMutationCall(StructUses.StructAddressUsers);
if (!EndMutation)
return false;
}
// Hoist the make_mutable.
LLVM_DEBUG(llvm::dbgs() << " Hoisting make_mutable: " << *MakeMutable);
hoistAddressProjections(MakeMutable.getSelfOperand());
assert(MakeMutable.canHoist(Preheader->getTerminator(), DomTree) &&
"Should be able to hoist make_mutable");
// Copy the make_mutable and end_mutation calls to the pre-header.
TermInst *insertionPoint = Preheader->getTerminator();
ApplyInst *hoistedMM = MakeMutable.copyTo(insertionPoint, DomTree);
ApplyInst *EMInst = EndMutation;
ApplyInst *hoistedEM = cast<ApplyInst>(EMInst->clone(insertionPoint));
hoistedEM->setArgument(0, hoistedMM->getArgument(0));
placeFuncRef(hoistedEM, DomTree);
// Register array loads. This is needed for hoisting make_mutable calls of
// inner arrays in the two-dimensional case.