-
Notifications
You must be signed in to change notification settings - Fork 441
/
Copy pathRegexLiteralLexer.swift
824 lines (724 loc) · 27.1 KB
/
RegexLiteralLexer.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#if compiler(>=6)
@_spi(RawSyntax) @_spi(BumpPtrAllocator) internal import SwiftSyntax
#else
@_spi(RawSyntax) @_spi(BumpPtrAllocator) import SwiftSyntax
#endif
/// A separate lexer specifically for regex literals.
fileprivate struct RegexLiteralLexer {
enum LexResult {
/// Continue the lex, this is returned from `lexPatternCharacter` when
/// it successfully lexed a character.
case `continue`
/// The lexing has finished successfully.
case done
/// This is not, in fact, a regex.
case notARegex
/// We have an unterminated regex.
case unterminated
}
private var cursor: Lexer.Cursor
private let mustBeRegex: Bool
/// If this is a multi-line regex literal, the cursor position of the first
/// newline.
private var firstNewline: Lexer.Cursor?
private var isMultiline: Bool { firstNewline != nil }
/// Tracks the current group '(' depth, used to enforce the heuristic that a
/// bare slash regex literal with an unbalanced ')' should be treated as an
/// operator instead.
private var groupDepth = 0
/// Tracks the current '[' custom character class depth, used to ensure we
/// don't count '(' and ')' characters in a custom character class as counting
/// as group characters.
private var customCharacterClassDepth = 0
/// Tracks the last unescaped space or tab character, used to enforce that a
/// regex literal may not end with a space or tab.
private var lastUnespacedSpaceOrTab: Lexer.Cursor?
/// Tracks the position after the last newline, used to enforce that a
/// closing multi-line delimiter appears alone on a new line.
private var lastNewlineEnd: Lexer.Cursor?
/// Tracks a potential closing delimiter candidate, even if the number of
/// delimiter pounds does not match. Used to recover better in unterminated
/// cases.
private var candidateCloseSlashEnd: Lexer.Cursor.Position?
/// The lexeme builder.
private var builder: RegexLiteralLexemes.Builder
init(_ cursor: Lexer.Cursor, mustBeRegex: Bool) {
self.cursor = cursor
self.mustBeRegex = mustBeRegex
self.builder = .init(startingAt: cursor.position)
}
/// Attempt to lex a character of the regex pattern.
private mutating func lexPatternCharacter(escaped: Bool) -> LexResult {
if cursor.isAtEndOfFile {
// We've hit the end of the buffer. In multi-line mode, we don't want to
// skip over what is likely otherwise valid Swift code, so resume from the
// first newline.
if let firstNewline = firstNewline {
cursor = firstNewline
}
return .unterminated
}
let charCursor = cursor
guard let char = cursor.advanceValidatingUTF8Character() else {
builder.recordPatternError(.invalidUtf8, at: cursor)
return .continue
}
switch char {
case "\n", "\r":
guard isMultiline else {
// Bump back the cursor to the newline to ensure it doesn't
// become part of the pattern token.
cursor = charCursor
return .unterminated
}
lastNewlineEnd = cursor
break
case "\\" where !escaped:
// Advance again for an escape sequence.
return lexPatternCharacter(escaped: true)
case "(" where !escaped && customCharacterClassDepth == 0:
groupDepth += 1
case ")" where !escaped && customCharacterClassDepth == 0:
guard groupDepth > 0 else {
// If we have an unbalanced ')', and this may not be a regex, don't
// lex as a regex.
if !mustBeRegex {
return .notARegex
}
break
}
groupDepth -= 1
case "[" where !escaped:
customCharacterClassDepth += 1
case "]" where !escaped:
if customCharacterClassDepth > 0 {
customCharacterClassDepth -= 1
}
case "\0":
builder.recordPatternError(.nulCharacter, at: charCursor)
break
case let char
where char.isASCII && !char.isPrintableASCII && !(isMultiline && char == "\t"):
// Diagnose unprintable ASCII.
// Note that tabs are allowed in multi-line literals.
// TODO: This matches the string literal behavior, but should we allow
// tabs for single-line regex literals too?
builder.recordPatternError(.unprintableAsciiCharacter, at: charCursor)
break
case " ", "\t":
if !escaped {
lastUnespacedSpaceOrTab = charCursor
}
break
default:
break
}
return .continue
}
/// Attempt to eat the closing delimiter.
private mutating func tryEatEnding() -> LexResult? {
let openPoundCount = builder.numOpenPounds
let slashBegin = cursor
var newCursor = cursor
guard newCursor.advance(matching: "/") else { return nil }
let slashEnd = newCursor
candidateCloseSlashEnd = slashEnd.position
// Try to eat closing pounds. Note we don't do this if we don't have any
// opening pounds (for recovery), as the builder currently bases the maximum
// token count off the presence of opening pounds, and it's not clear if
// recovery in that case is useful anyway.
var closePoundCount = 0
if openPoundCount > 0 {
while newCursor.advance(matching: "#") {
closePoundCount += 1
}
}
// Make sure we have sufficient closing pounds. Note we can consume extra
// for better recovery.
guard closePoundCount >= openPoundCount else { return nil }
// If we have a multi-line literal, make sure the closing delimiter
// appears alone on a newline.
if let lastNewlineEnd {
var delimScan = lastNewlineEnd
while delimScan.pointer < slashBegin.pointer {
if !delimScan.advance(matching: " ", "\t") {
builder.recordPatternError(.multilineRegexClosingNotOnNewline, at: slashBegin)
break
}
}
}
if closePoundCount == 0 {
if let end = newCursor.peek() {
// If we're lexing `/.../`, treat it as unterminated if we ended on the
// opening of a comment. We prefer to lex the comment as it's more likely
// than not that is what the user is expecting.
switch UnicodeScalar(end) {
case "*", "/":
return .unterminated
default:
break
}
}
// We also ban unespaced space and tab at the end of a regex literal if
// this might not be a regex.
if let lastUnespacedSpaceOrTab = lastUnespacedSpaceOrTab,
lastUnespacedSpaceOrTab.position.advanced(by: 1).pointer == slashBegin.position.pointer
{
if mustBeRegex {
builder.recordPatternError(.spaceAtEndOfRegexLiteral, at: lastUnespacedSpaceOrTab)
} else {
return .notARegex
}
}
}
builder.recordCloseSlash(endingAt: slashEnd.position)
if closePoundCount > 0 {
builder.recordClosePounds(count: closePoundCount)
}
cursor = newCursor
return .done
}
private mutating func lexImpl() -> LexResult {
// We can consume any number of pound signs.
var poundCount = 0
while cursor.advance(matching: "#") {
poundCount += 1
}
if poundCount > 0 {
builder.recordOpenPounds(count: poundCount)
}
// Try to lex the opening delimiter.
let openSlash = cursor
guard cursor.advance(matching: "/") else {
return .notARegex
}
builder.recordOpenSlash()
if !builder.hasPounds {
if let next = cursor.peek() {
switch UnicodeScalar(next) {
case " ", "\t":
// For `/.../` regex literals, we need to ban space and tab at the start
// of a regex to avoid ambiguity with operator chains, e.g:
//
// Builder {
// 0
// / 1 /
// 2
// }
//
if mustBeRegex {
builder.recordPatternError(.spaceAtStartOfRegexLiteral, at: cursor)
} else {
return .notARegex
}
case "*", "/":
// Start of a comment, not a regex.
return .notARegex
default:
break
}
}
if openSlash.previous == UInt8(ascii: "*") {
// End of block comment, not a regex.
return .notARegex
}
}
// If the delimiter allows multi-line, try skipping over any whitespace to a
// newline character. If we can do that, we enter multi-line mode.
if builder.hasPounds {
var newlineScan = cursor
while let next = newlineScan.peek() {
switch UnicodeScalar(next) {
case " ", "\t":
_ = newlineScan.advance()
continue
case "\n", "\r":
firstNewline = newlineScan
cursor = newlineScan
default:
break
}
break
}
}
while true {
if let result = tryEatEnding() {
return result
}
switch lexPatternCharacter(escaped: false) {
case .continue:
continue
case let result:
return result
}
}
}
mutating func lex() -> RegexLiteralLexemes? {
switch lexImpl() {
case .continue:
preconditionFailure("Not a valid result")
case .notARegex:
return nil
case .unterminated where !mustBeRegex:
// If this may not be a regex, bail.
return nil
case .done, .unterminated:
// In both cases we can just return the lexemes. We'll diagnose when
// parsing.
return builder.finish(
at: cursor.position,
candidateCloseSlashEnd: candidateCloseSlashEnd
)
}
}
}
struct RegexLiteralLexemes {
private let builder: Builder
fileprivate init(from builder: Builder) {
self.builder = builder
}
struct Element {
var kind: Kind
var end: Lexer.Cursor.Position
var error: Lexer.Cursor.LexingDiagnostic?
}
}
extension RegexLiteralLexemes {
/// Allocate the lexemes on a given bump pointer allocator.
func allocate(in allocator: BumpPtrAllocator) -> UnsafePointer<RegexLiteralLexemes> {
let ptr = allocator.allocate(Self.self, count: 1).baseAddress!
ptr.initialize(to: self)
return UnsafePointer(ptr)
}
}
extension RegexLiteralLexemes.Element {
/// The regex literal token kind, the raw value of which indicates its index.
enum Kind: UInt8 {
case openingPounds
case openingSlash
case pattern
case closingSlash
case closingPounds
}
/// Retrieve the actual token kind.
var tokenKind: RawTokenKind {
switch kind {
case .openingPounds, .closingPounds:
return .regexPoundDelimiter
case .openingSlash, .closingSlash:
return .regexSlash
case .pattern:
return .regexLiteralPattern
}
}
}
extension RegexLiteralLexemes.Element.Kind {
/// Construct the regex literal token kind from a given index, taking pounds
/// into account.
fileprivate init(at index: UInt8, hasPounds: Bool) {
if hasPounds {
// If we have pounds, we have 5 tokens maximum.
precondition(index < 5)
self.init(rawValue: index)!
} else {
// Otherwise, we have 3 tokens maximum, and start at the slash.
precondition(index < 3)
self.init(rawValue: index + 1)!
}
}
}
extension RegexLiteralLexemes {
/// A builder type for the regex literal lexer.
///
/// NOTE: This is stored for the regex literal lexer state, so should be kept
/// as small as possible. Additionally, it is allocated using a bump pointer
/// allocator, so must remain a POD type (i.e no classes).
fileprivate struct Builder {
private(set) var numOpenPounds: Int = 0
private(set) var patternByteLength: Int = 0
private(set) var numClosePounds: Int = 0
// The start position is split into its component input buffer and
// previous char to allow for a more optimized layout.
private let _startInput: UnsafeBufferPointer<UInt8>
// The pattern diagnostic is split for a more optimized layout.
private var _patternErrorOffset: Int?
private var _patternErrorKind: TokenDiagnostic.Kind?
private let _startPrevious: UInt8
/// The number of lexemes. This is a UInt8 as there can only be a maximum
/// of 5 lexemes for a regex literal (open pounds, open slash, pattern,
/// closing slash, closing pounds).
private(set) var lexemeCount: UInt8 = 0
init(startingAt start: Lexer.Cursor.Position) {
self._startInput = start.input
self._startPrevious = start.previous
}
var start: Lexer.Cursor.Position {
.init(input: _startInput, previous: _startPrevious)
}
private(set) var patternError: Lexer.Cursor.LexingDiagnostic? {
get {
guard let _patternErrorKind = _patternErrorKind else { return nil }
let pos = start.advanced(by: _patternErrorOffset!)
return .init(_patternErrorKind, position: pos)
}
set {
guard let newValue = newValue else {
_patternErrorKind = nil
_patternErrorOffset = nil
return
}
_patternErrorKind = newValue.kind
_patternErrorOffset = start.distance(to: newValue.position)
}
}
var hasPounds: Bool { numOpenPounds > 0 }
}
}
extension RegexLiteralLexemes.Builder {
typealias Element = RegexLiteralLexemes.Element
/// The lexeme kind for the last lexed token, or `nil` if no token has been
/// lexed yet.
var lastLexemeKind: Element.Kind? {
if lexemeCount == 0 { return nil }
return .init(at: lexemeCount - 1, hasPounds: hasPounds)
}
/// The end byte offset for a given regex token kind.
func endByteOffset(for kind: Element.Kind) -> Int {
switch kind {
case .openingPounds:
return numOpenPounds
case .openingSlash:
return numOpenPounds + 1
case .pattern:
return numOpenPounds + 1 + patternByteLength
case .closingSlash:
return numOpenPounds + 1 + patternByteLength + 1
case .closingPounds:
return numOpenPounds + 1 + patternByteLength + 1 + numClosePounds
}
}
/// Retrieve the end cursor position for a given regex token kind.
func endCursorPosition(for kind: Element.Kind) -> Lexer.Cursor.Position {
start.advanced(by: endByteOffset(for: kind))
}
mutating func recordOpenPounds(count: Int) {
precondition(lastLexemeKind == nil)
numOpenPounds = count
lexemeCount += 1
}
mutating func recordOpenSlash() {
precondition(lastLexemeKind == nil || lastLexemeKind == .openingPounds)
lexemeCount += 1
}
private mutating func recordRegexPattern(byteLength: Int) {
precondition(lastLexemeKind == .openingSlash)
patternByteLength = byteLength
lexemeCount += 1
}
mutating func recordCloseSlash(endingAt closeSlashEnd: Lexer.Cursor.Position) {
precondition(lastLexemeKind == .openingSlash)
// We use the close slash to compute the pattern length.
let patternStart = endCursorPosition(for: .openingSlash)
recordRegexPattern(byteLength: patternStart.distance(to: closeSlashEnd) - 1)
lexemeCount += 1
}
mutating func recordClosePounds(count: Int) {
precondition(lastLexemeKind == .closingSlash)
numClosePounds = count
lexemeCount += 1
}
mutating func recordPatternError(
_ kind: TokenDiagnostic.Kind,
at cursor: Lexer.Cursor
) {
precondition(lastLexemeKind == .openingSlash)
// Only record if we don't already have a pattern error, we want to prefer
// the first error we encounter.
if patternError == nil {
patternError = .init(kind, position: cursor)
}
}
/// Finish regex literal lexing.
mutating func finish(
at end: Lexer.Cursor.Position,
candidateCloseSlashEnd: Lexer.Cursor.Position?
) -> RegexLiteralLexemes {
// If we ended up in the middle of a pattern, we have an unterminated
// literal. Make sure to record the pattern, and do some recovery for
// better diagnostics.
if lastLexemeKind == .openingSlash {
let patternStart = endCursorPosition(for: .openingSlash)
let byteLength = patternStart.distance(to: end)
// If have an extended literal, we can do some recovery for unterminated
// cases by seeing if we have something that looks like the ending
// delimiter at the end of the pattern, and treating it as such. The
// parser will diagnose if it doesn't end up matching.
func inferClosingDelimiter() -> (slashEnd: Lexer.Cursor.Position, numPounds: Int)? {
guard hasPounds && byteLength > 0 else { return nil }
// If the last characeter is '/', we can use that.
if UnicodeScalar(end.previous) == "/" {
return (end, numPounds: 0)
}
// If the last character is '#', scan from the candidate last slash to
// see if we only have '#' characters until the end. In such a case,
// we can claim those characters as part of the delimiter.
if UnicodeScalar(end.previous) == "#",
let candidateCloseSlashEnd = candidateCloseSlashEnd
{
var poundScan = candidateCloseSlashEnd
var numClosingPounds = 0
while poundScan.pointer < end.pointer,
UnicodeScalar(poundScan.advance()!) == "#"
{
numClosingPounds += 1
}
precondition(numClosingPounds < numOpenPounds, "Should have lexed this?")
// Should be at the end now, otherwise this is something bogus in
// the middle of the pattern.
if poundScan.pointer == end.pointer {
return (candidateCloseSlashEnd, numClosingPounds)
}
}
return nil
}
if let (closeSlashEnd, numClosingPounds) = inferClosingDelimiter() {
recordCloseSlash(endingAt: closeSlashEnd)
if numClosingPounds > 0 {
recordClosePounds(count: numClosingPounds)
}
} else {
recordRegexPattern(byteLength: byteLength)
}
}
return .init(from: self)
}
}
extension RegexLiteralLexemes: RandomAccessCollection {
typealias Index = UInt8
var startIndex: UInt8 { 0 }
var endIndex: UInt8 { builder.lexemeCount }
/// Retrieve the token at the given index.
subscript(index: UInt8) -> Element {
let kind = Element.Kind(at: index, hasPounds: builder.hasPounds)
return .init(
kind: kind,
end: builder.endCursorPosition(for: kind),
error: kind == .pattern ? builder.patternError : nil
)
}
}
extension Lexer.Cursor {
/// A heuristic that determines whether the cursor is currently in a regex
/// literal position by looking at the previous token to determine if we're
/// expecting an expression, or a binary operator.
fileprivate func isInRegexLiteralPosition() -> Bool {
switch previousTokenKind {
// Can lex a regex literal at the start of the buffer.
case nil:
return true
// Cannot lex at the end of the buffer.
case .endOfFile:
return false
// Prefix grammar that appears before an expression.
case .leftAngle, .leftBrace, .leftParen, .leftSquare, .prefixOperator, .prefixAmpersand:
return true
// Binary operators sequence expressions.
case .binaryOperator, .equal:
return true
// Infix punctuation that generally separates expressions.
case .semicolon, .comma, .colon, .infixQuestionMark:
return true
// Postfix grammar would expect a binary operator next.
case .postfixOperator, .exclamationMark, .postfixQuestionMark, .rightAngle, .rightBrace, .rightParen, .rightSquare:
return false
// Punctuation that does not sequence expressions.
case .arrow, .ellipsis, .period, .atSign, .pound, .backtick, .backslash:
return false
// Shebang does not sequence expressions.
case .shebang:
return false
case .keyword:
// There are a handful of keywords that are expressions, handle them.
// Otherwise, a regex literal can generally be parsed after a keyword.
switch previousKeyword! {
case .true, .false, .Any, .nil, .`self`, .`Self`, .super:
return false
default:
return true
}
// Identifiers do not sequence expressions.
case .identifier, .dollarIdentifier, .wildcard:
return false
// Literals are themselves expressions and therefore don't sequence expressions.
case .floatLiteral, .integerLiteral:
return false
// Pound keywords that do not generally sequence expressions.
case .poundAvailable, .poundSourceLocation, .poundUnavailable:
return false
// Pound keywords that generally do sequence expressions.
case .poundIf, .poundElse, .poundElseif, .poundEndif:
return true
// Bits of string/regex grammar, we can't start lexing a regex literal here.
case .regexPoundDelimiter, .regexSlash, .regexLiteralPattern, .rawStringPoundDelimiter, .stringQuote,
.stringSegment, .multilineStringQuote, .singleQuote:
return false
// Allow unknown for better recovery.
case .unknown:
return true
}
}
}
extension Lexer.Cursor {
/// Scan for a regex literal, without advancing the cursor. Returns the regex
/// literal tokens scanned, or `nil` if there is no regex literal.
fileprivate func scanRegexLiteral(mustBeRegex: Bool) -> RegexLiteralLexemes? {
var lexer = RegexLiteralLexer(self, mustBeRegex: mustBeRegex)
return lexer.lex()
}
/// Attempt to scan for a regex literal starting from within an operator we've
/// lexed.
fileprivate func tryScanOperatorAsRegexLiteral(
operatorStart: Lexer.Cursor,
operatorEnd: Lexer.Cursor,
sourceBufferStart: Lexer.Cursor,
preferRegexOverBinaryOperator: Bool
) -> RegexLiteralLexemes? {
precondition(self.pointer >= operatorStart.pointer, "lexing before the operator?")
let isLeftBound = operatorStart.isLeftBound(sourceBufferStart: sourceBufferStart)
let isRightBound = operatorEnd.isRightBound(isLeftBound: isLeftBound)
// Must not be left bound, we should lex a postfix '/' instead.
guard !isLeftBound else { return nil }
// If the previous token was 'func' or 'operator', the next token must
// be an operator, not a regex. This is needed to correctly handle cases
// like:
//
// operator /^/
// postfix func /(lhs: Int) { 5/ }
//
// Re-lexing isn't a viable strategy as there could be unbalanced curly
// braces in the regex, which interferes with the lexical structure (e.g
// anything relying on the lexed tokens to correctly balance curly braces).
switch self.previousKeyword {
case .func, .operator:
return nil
default:
break
}
// Handle cases where the '/' is part of what looks like a binary operator.
var mustBeRegex = false
if isLeftBound == isRightBound {
// The `preferRegexOverBinaryOperator` flag is set if we previously had a
// 'try?' or 'try!'. In that case, the previous token is a postfix
// operator, which would usually indicate that we're not in regex literal
// position (as we would typically expect a binary operator to follow a
// postfix operator, not an expression). However 'try' is special because
// it cannot appear on the LHS of a binary operator, so we know we must
// have a regex.
//
// This is needed to handle cases like `try? /^ x/`, which should be lexed
// as a regex. This can occur for cases like `try? /^ x/.wholeMatch(...)`.
if preferRegexOverBinaryOperator {
mustBeRegex = true
}
// If we are not in a regex literal position, and are not certain, then
// prefer lexing as a binary operator instead.
if !mustBeRegex && !operatorStart.isInRegexLiteralPosition() {
return nil
}
// For better recovery, we can confidently lex a regex literal if we're in
// regex literal position, and the '/' is part of what looks like a binary
// operator. This would otherwise be illegal code, as binary operators
// cannot appear in expression position. The only exception to this is if
// the previous token indicates we're in an argument list, in which case
// an unapplied operator is legal, and we should prefer to lex as that
// instead.
switch previousTokenKind {
case .leftParen, .leftSquare, .comma, .colon:
break
default:
mustBeRegex = true
}
}
return scanRegexLiteral(mustBeRegex: mustBeRegex)
}
}
extension Lexer.Cursor {
/// Attempt to lex a regex literal. Note this lexes confidently, without
/// applying various heuristics to avoid lexing a regex literal in ambiguous
/// cases.
mutating func lexRegexLiteral() -> Lexer.Result? {
guard let lexemes = scanRegexLiteral(mustBeRegex: true) else { return nil }
return lexInRegexLiteral(lexemes[...], existingPtr: nil)
}
/// Attempt to lex an operator as a regex literal, returning the result,
/// or `nil` if a regex literal could not be lexed.
mutating func tryLexOperatorAsRegexLiteral(
at regexStart: Lexer.Cursor,
operatorStart: Lexer.Cursor,
operatorEnd: Lexer.Cursor,
sourceBufferStart: Lexer.Cursor,
preferRegexOverBinaryOperator: Bool
) -> Lexer.Result? {
guard
let lexemes = regexStart.tryScanOperatorAsRegexLiteral(
operatorStart: operatorStart,
operatorEnd: operatorEnd,
sourceBufferStart: sourceBufferStart,
preferRegexOverBinaryOperator: preferRegexOverBinaryOperator
)
else { return nil }
if regexStart.pointer > operatorStart.pointer {
// If we started lexing in the middle of an operator, split off the prefix
// operator, and move the cursor to where the regex literal starts.
self.position = regexStart.position
let (kind, error) = Self.classifyOperatorToken(
operStart: operatorStart,
operEnd: regexStart,
sourceBufferStart: sourceBufferStart
)
return Lexer.Result(
kind,
error: error,
stateTransition: .pushRegexLexemes(index: 0, lexemes: lexemes)
)
} else {
// Otherwise we just have a regex literal. We can call into
// `lexInRegexLiteral` to pop the first token and push the state.
return lexInRegexLiteral(lexemes[...], existingPtr: nil)
}
}
/// Lex an already-lexed regex literal. If `existingPtr` is non-nil, this is
/// for an existing regex literal state on the lexer state stack.
mutating func lexInRegexLiteral(
_ lexemes: Slice<RegexLiteralLexemes>,
existingPtr: UnsafePointer<RegexLiteralLexemes>?
) -> Lexer.Result {
// Given we have already lexed the regex literal, this is as simple as
// popping off the next token and moving the lexer up to its end position.
var lexemes = lexemes
let lexeme = lexemes.removeFirst()
self.position = lexeme.end
// The new index is now given by the slice start index (as we've removed
// the first element).
let index = lexemes.startIndex
// Compute the new transition.
let transition: Lexer.StateTransition?
if let existingPtr {
transition = lexemes.isEmpty ? .pop : .replace(newState: .inRegexLiteral(index: index, lexemes: existingPtr))
} else {
transition = lexemes.isEmpty ? nil : .pushRegexLexemes(index: index, lexemes: lexemes.base)
}
return .init(lexeme.tokenKind, error: lexeme.error, stateTransition: transition)
}
}