-
Notifications
You must be signed in to change notification settings - Fork 874
/
Copy pathnaive-policy-gradient.py
153 lines (115 loc) · 3.78 KB
/
naive-policy-gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import gym
import matplotlib.pyplot as plt
from itertools import count
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.distributions import Categorical
#Hyperparameters
learning_rate = 0.01
gamma = 0.98
num_episode = 5000
batch_size = 32
env = gym.make('CartPole-v0')
state_space = env.observation_space.shape[0]
action_space = env.action_space.n
def plot_durations(episode_durations):
plt.ion()
plt.figure(2)
plt.clf()
duration_t = torch.FloatTensor(episode_durations)
plt.title('Training')
plt.xlabel('Episodes')
plt.ylabel('Duration')
plt.plot(duration_t.numpy())
if len(duration_t) >= 100:
means = duration_t.unfold(0,100,1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
plt.plot(means.numpy())
plt.pause(0.00001)
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.state_space = state_space
self.action_space = action_space
self.fc1 = nn.Linear(self.state_space, 128)
self.fc2 = nn.Linear(128, self.action_space)
def forward(self, x):
x = self.fc1(x)
#x = F.dropout(x, 0.5)
x = F.relu(x)
x = F.softmax(self.fc2(x), dim=-1)
return x
policy = Policy()
optimizer = torch.optim.Adam(policy.parameters(), lr=learning_rate)
def train():
episode_durations = []
#Batch_history
state_pool = []
action_pool = []
reward_pool = []
steps = 0
for episode in range(num_episode):
state = env.reset()
state = torch.from_numpy(state).float()
state = Variable(state)
env.render()
for t in count():
probs = policy(state)
c = Categorical(probs)
action = c.sample()
action = action.data.numpy().astype('int32')
next_state, reward, done, info = env.step(action)
reward = 0 if done else reward # correct the reward
env.render()
state_pool.append(state)
action_pool.append(float(action))
reward_pool.append(reward)
state = next_state
state = torch.from_numpy(state).float()
state = Variable(state)
steps += 1
if done:
episode_durations.append(t+1)
plot_durations(episode_durations)
break
# update policy
if episode >0 and episode % batch_size == 0:
r = 0
'''
for i in reversed(range(steps)):
if reward_pool[i] == 0:
running_add = 0
else:
running_add = running_add * gamma +reward_pool[i]
reward_pool[i] = running_add
'''
for i in reversed(range(steps)):
if reward_pool[i] == 0:
r = 0
else:
r = r * gamma + reward_pool[i]
reward_pool[i] = r
#Normalize reward
reward_mean = np.mean(reward_pool)
reward_std = np.std(reward_pool)
reward_pool = (reward_pool-reward_mean)/reward_std
#gradiend desent
optimizer.zero_grad()
for i in range(steps):
state = state_pool[i]
action = Variable(torch.FloatTensor([action_pool[i]]))
reward = reward_pool[i]
probs = policy(state)
c = Categorical(probs)
loss = -c.log_prob(action) * reward
loss.backward()
optimizer.step()
# clear the batch pool
state_pool = []
action_pool = []
reward_pool = []
steps = 0
train()