|
| 1 | +# -*- coding: UTF-8 -*- |
| 2 | +import pickle |
| 3 | +from dnlp.utils.constant import TAG_BEGIN, TAG_INSIDE, TAG_OTHER, TAG_END, TAG_SINGLE |
| 4 | + |
| 5 | + |
| 6 | +def get_cws_statistics(correct_labels, predict_labels) -> (int, int, int): |
| 7 | + if len(correct_labels) != len(predict_labels): |
| 8 | + raise Exception('length of correct labels and predict labels is not equal') |
| 9 | + |
| 10 | + true_positive_count = 0 |
| 11 | + corrects = {} |
| 12 | + predicts = {} |
| 13 | + correct_start = 0 |
| 14 | + predict_start = 0 |
| 15 | + |
| 16 | + for i, (correct_label, predict_label) in enumerate(zip(correct_labels, predict_labels)): |
| 17 | + if correct_label == TAG_BEGIN: |
| 18 | + correct_start = i |
| 19 | + corrects[correct_start] = correct_start |
| 20 | + elif correct_label == TAG_SINGLE: |
| 21 | + correct_start = i |
| 22 | + corrects[correct_start] = correct_start |
| 23 | + elif correct_label == TAG_INSIDE or correct_label == TAG_END: |
| 24 | + corrects[correct_start] = i |
| 25 | + |
| 26 | + if predict_label == TAG_BEGIN: |
| 27 | + predict_start = i |
| 28 | + predicts[predict_start] = predict_start |
| 29 | + elif predict_label == TAG_SINGLE: |
| 30 | + predict_start = i |
| 31 | + predicts[predict_start] = predict_start |
| 32 | + elif predict_label == TAG_INSIDE or predict_label == TAG_END: |
| 33 | + predicts[predict_start] = i |
| 34 | + |
| 35 | + for predict in predicts: |
| 36 | + if corrects.get(predict) is not None and corrects[predict] == predicts[predict]: |
| 37 | + true_positive_count += 1 |
| 38 | + |
| 39 | + return true_positive_count, len(predicts), len(corrects) |
| 40 | + |
| 41 | + |
| 42 | +def get_ner_statistics(correct_labels, predict_labels) -> (int, int, int): |
| 43 | + if len(correct_labels) != len(predict_labels): |
| 44 | + raise Exception('length of correct labels and predict labels is not equal') |
| 45 | + |
| 46 | + true_positive_count = 0 |
| 47 | + corrects = {} |
| 48 | + predicts = {} |
| 49 | + correct_start = 0 |
| 50 | + predict_start = 0 |
| 51 | + |
| 52 | + for i, (correct_label, predict_label) in enumerate(zip(correct_labels, predict_labels)): |
| 53 | + if correct_label == TAG_BEGIN: |
| 54 | + correct_start = i |
| 55 | + corrects[correct_start] = correct_start |
| 56 | + elif correct_label == TAG_INSIDE: |
| 57 | + corrects[correct_start] = i |
| 58 | + |
| 59 | + if predict_label == TAG_BEGIN: |
| 60 | + predict_start = i |
| 61 | + predicts[predict_start] = predict_start |
| 62 | + elif predict_label == TAG_INSIDE: |
| 63 | + predicts[predict_start] = i |
| 64 | + |
| 65 | + for predict in predicts: |
| 66 | + if corrects.get(predict) is not None and corrects[predict] == predicts[predict]: |
| 67 | + true_positive_count += 1 |
| 68 | + |
| 69 | + return true_positive_count, len(predicts), len(corrects) |
| 70 | + |
| 71 | + |
| 72 | +def evaluate_cws(model, data_path: str): |
| 73 | + with open(data_path, 'rb') as f: |
| 74 | + data = pickle.load(f) |
| 75 | + dictionary = data['dictionary'] |
| 76 | + tags = data['tags'] |
| 77 | + reversed_map = dict(zip(tags.values(), tags.keys())) |
| 78 | + characters = data['characters'] |
| 79 | + labels_true = data['labels'] |
| 80 | + c_count = 0 |
| 81 | + p_count = 0 |
| 82 | + r_count = -0 |
| 83 | + for sentence, label in enumerate(characters, labels_true): |
| 84 | + words, labels_predict = model.predict(sentence, return_labels=True) |
| 85 | + seq = [] |
| 86 | + for l in zip(labels_predict): |
| 87 | + seq.append(reversed_map[l]) |
| 88 | + c, p, r = get_cws_statistics(label, seq) |
| 89 | + c_count += c |
| 90 | + p_count += p |
| 91 | + r_count += r |
| 92 | + print(c / p) |
| 93 | + print(c / r) |
0 commit comments