-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgraph_kernels.py
executable file
·139 lines (111 loc) · 3.61 KB
/
graph_kernels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import networkx as nx
import numpy as np
from collections import defaultdict
import copy
from scipy.sparse import lil_matrix
def sp_kernel(g1, g2=None):
if g2 != None:
graphs = []
for g in g1:
graphs.append(g)
for g in g2:
graphs.append(g)
else:
graphs = g1
sp_lengths = []
for graph in graphs:
sp_lengths.append(nx.shortest_path_length(graph))
N = len(graphs)
all_paths = {}
sp_counts = {}
for i in range(N):
sp_counts[i] = {}
nodes = graphs[i].nodes()
for v1 in nodes:
for v2 in nodes:
if v2 in sp_lengths[i][v1]:
label = sp_lengths[i][v1][v2]
if label in sp_counts[i]:
sp_counts[i][label] += 1
else:
sp_counts[i][label] = 1
if label not in all_paths:
all_paths[label] = len(all_paths)
phi = lil_matrix((N,len(all_paths)))
for i in range(N):
for label in sp_counts[i]:
phi[i,all_paths[label]] = sp_counts[i][label]
if g2 != None:
K = np.dot(phi[:len(g1),:],phi[len(g1):,:].T)
else:
K = np.dot(phi,phi.T)
K = np.asarray(K.todense())
return K
def wl_kernel(g1, g2=None, h=6):
if g2 != None:
graphs = []
for g in g1:
graphs.append(g)
for g in g2:
graphs.append(g)
else:
graphs = g1
for G in graphs:
for node in G.nodes():
G.node[node]['label'] = G.degree(node)
labels = {}
label_lookup = {}
label_counter = 0
N = len(graphs)
orig_graph_map = {it: {i: defaultdict(lambda: 0) for i in range(N)} for it in range(-1, h)}
# initial labeling
ind = 0
for G in graphs:
labels[ind] = np.zeros(G.number_of_nodes(), dtype = np.int32)
node2index = {}
for node in G.nodes():
node2index[node] = len(node2index)
for node in G.nodes():
label = G.node[node]['label']
if not (label in label_lookup):
label_lookup[label] = len(label_lookup)
labels[ind][node2index[node]] = label_lookup[label]
orig_graph_map[-1][ind][label] = orig_graph_map[-1][ind].get(label, 0) + 1
ind += 1
compressed_labels = copy.deepcopy(labels)
# WL iterations
for it in range(h):
unique_labels_per_h = set()
label_lookup = {}
ind = 0
for G in graphs:
node2index = {}
for node in G.nodes():
node2index[node] = len(node2index)
for node in G.nodes():
node_label = tuple([labels[ind][node2index[node]]])
neighbors = G.neighbors(node)
if len(neighbors) > 0:
neighbors_label = tuple([labels[ind][node2index[neigh]] for neigh in neighbors])
node_label = str(node_label) + "-" + str(sorted(neighbors_label))
if not (node_label in label_lookup):
label_lookup[node_label] = len(label_lookup)
compressed_labels[ind][node2index[node]] = label_lookup[node_label]
orig_graph_map[it][ind][node_label] = orig_graph_map[it][ind].get(node_label, 0) + 1
ind +=1
labels = copy.deepcopy(compressed_labels)
if g2 != None:
K = np.zeros((len(g1), len(g2)))
for it in range(-1, h):
for i in range(len(g1)):
for j in range(len(g2)):
common_keys = set(orig_graph_map[it][i].keys()) & set(orig_graph_map[it][len(g1)+j].keys())
K[i][j] += sum([orig_graph_map[it][i].get(k,0)*orig_graph_map[it][len(g1)+j].get(k,0) for k in common_keys])
else:
K = np.zeros((N, N))
for it in range(-1, h):
for i in range(N):
for j in range(N):
common_keys = set(orig_graph_map[it][i].keys()) & set(orig_graph_map[it][j].keys())
K[i][j] += sum([orig_graph_map[it][i].get(k,0)*orig_graph_map[it][j].get(k,0) for k in common_keys])
return K