forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_curve.py
308 lines (251 loc) · 13 KB
/
learning_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""Utilities to evaluate models with respect to a variable
"""
# Author: Alexander Fabisch <afabisch@informatik.uni-bremen.de>
#
# License: BSD 3 clause
import warnings
import numpy as np
from .base import is_classifier, clone
from .cross_validation import _check_cv
from .externals.joblib import Parallel, delayed
from .cross_validation import _safe_split, _score, _fit_and_score
from .metrics.scorer import check_scoring
from .utils import indexable
from .utils.fixes import astype
def learning_curve(estimator, X, y, train_sizes=np.linspace(0.1, 1.0, 5),
cv=None, scoring=None, exploit_incremental_learning=False,
n_jobs=1, pre_dispatch="all", verbose=0):
"""Learning curve.
Determines cross-validated training and test scores for different training
set sizes.
A cross-validation generator splits the whole dataset k times in training
and test data. Subsets of the training set with varying sizes will be used
to train the estimator and a score for each training subset size and the
test set will be computed. Afterwards, the scores will be averaged over
all k runs for each training subset size.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
train_sizes : array-like, shape (n_ticks,), dtype float or int
Relative or absolute numbers of training examples that will be used to
generate the learning curve. If the dtype is float, it is regarded as a
fraction of the maximum size of the training set (that is determined
by the selected validation method), i.e. it has to be within (0, 1].
Otherwise it is interpreted as absolute sizes of the training sets.
Note that for classification the number of samples usually have to
be big enough to contain at least one sample from each class.
(default: np.linspace(0.1, 1.0, 5))
cv : integer, cross-validation generator, optional
If an integer is passed, it is the number of folds (defaults to 3).
Specific cross-validation objects can be passed, see
sklearn.cross_validation module for the list of possible objects
scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
exploit_incremental_learning : boolean, optional, default: False
If the estimator supports incremental learning, this will be
used to speed up fitting for different training set sizes.
n_jobs : integer, optional
Number of jobs to run in parallel (default 1).
pre_dispatch : integer or string, optional
Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The string can
be an expression like '2*n_jobs'.
verbose : integer, optional
Controls the verbosity: the higher, the more messages.
Returns
-------
train_sizes_abs : array, shape = (n_unique_ticks,), dtype int
Numbers of training examples that has been used to generate the
learning curve. Note that the number of ticks might be less
than n_ticks because duplicate entries will be removed.
train_scores : array, shape (n_ticks, n_cv_folds)
Scores on training sets.
test_scores : array, shape (n_ticks, n_cv_folds)
Scores on test set.
Notes
-----
See :ref:`examples/model_selection/plot_learning_curve.py
<example_model_selection_plot_learning_curve.py>`
"""
if exploit_incremental_learning and not hasattr(estimator, "partial_fit"):
raise ValueError("An estimator must support the partial_fit interface "
"to exploit incremental learning")
X, y = indexable(X, y)
# Make a list since we will be iterating multiple times over the folds
cv = list(_check_cv(cv, X, y, classifier=is_classifier(estimator)))
scorer = check_scoring(estimator, scoring=scoring)
# HACK as long as boolean indices are allowed in cv generators
if cv[0][0].dtype == bool:
new_cv = []
for i in range(len(cv)):
new_cv.append((np.nonzero(cv[i][0])[0], np.nonzero(cv[i][1])[0]))
cv = new_cv
n_max_training_samples = len(cv[0][0])
# Because the lengths of folds can be significantly different, it is
# not guaranteed that we use all of the available training data when we
# use the first 'n_max_training_samples' samples.
train_sizes_abs = _translate_train_sizes(train_sizes,
n_max_training_samples)
n_unique_ticks = train_sizes_abs.shape[0]
if verbose > 0:
print("[learning_curve] Training set sizes: " + str(train_sizes_abs))
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
verbose=verbose)
if exploit_incremental_learning:
classes = np.unique(y) if is_classifier(estimator) else None
out = parallel(delayed(_incremental_fit_estimator)(
clone(estimator), X, y, classes, train, test, train_sizes_abs,
scorer, verbose) for train, test in cv)
else:
out = parallel(delayed(_fit_and_score)(
clone(estimator), X, y, scorer, train[:n_train_samples], test,
verbose, parameters=None, fit_params=None, return_train_score=True)
for train, test in cv for n_train_samples in train_sizes_abs)
out = np.array(out)[:, :2]
n_cv_folds = out.shape[0] // n_unique_ticks
out = out.reshape(n_cv_folds, n_unique_ticks, 2)
out = np.asarray(out).transpose((2, 1, 0))
return train_sizes_abs, out[0], out[1]
def _translate_train_sizes(train_sizes, n_max_training_samples):
"""Determine absolute sizes of training subsets and validate 'train_sizes'.
Examples:
_translate_train_sizes([0.5, 1.0], 10) -> [5, 10]
_translate_train_sizes([5, 10], 10) -> [5, 10]
Parameters
----------
train_sizes : array-like, shape (n_ticks,), dtype float or int
Numbers of training examples that will be used to generate the
learning curve. If the dtype is float, it is regarded as a
fraction of 'n_max_training_samples', i.e. it has to be within (0, 1].
n_max_training_samples : int
Maximum number of training samples (upper bound of 'train_sizes').
Returns
-------
train_sizes_abs : array, shape (n_unique_ticks,), dtype int
Numbers of training examples that will be used to generate the
learning curve. Note that the number of ticks might be less
than n_ticks because duplicate entries will be removed.
"""
train_sizes_abs = np.asarray(train_sizes)
n_ticks = train_sizes_abs.shape[0]
n_min_required_samples = np.min(train_sizes_abs)
n_max_required_samples = np.max(train_sizes_abs)
if np.issubdtype(train_sizes_abs.dtype, np.float):
if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0:
raise ValueError("train_sizes has been interpreted as fractions "
"of the maximum number of training samples and "
"must be within (0, 1], but is within [%f, %f]."
% (n_min_required_samples,
n_max_required_samples))
train_sizes_abs = astype(train_sizes_abs * n_max_training_samples,
dtype=np.int, copy=False)
train_sizes_abs = np.clip(train_sizes_abs, 1,
n_max_training_samples)
else:
if (n_min_required_samples <= 0 or
n_max_required_samples > n_max_training_samples):
raise ValueError("train_sizes has been interpreted as absolute "
"numbers of training samples and must be within "
"(0, %d], but is within [%d, %d]."
% (n_max_training_samples,
n_min_required_samples,
n_max_required_samples))
train_sizes_abs = np.unique(train_sizes_abs)
if n_ticks > train_sizes_abs.shape[0]:
warnings.warn("Removed duplicate entries from 'train_sizes'. Number "
"of ticks will be less than than the size of "
"'train_sizes' %d instead of %d)."
% (train_sizes_abs.shape[0], n_ticks), RuntimeWarning)
return train_sizes_abs
def _incremental_fit_estimator(estimator, X, y, classes, train, test,
train_sizes, scorer, verbose):
"""Train estimator on training subsets incrementally and compute scores."""
train_scores, test_scores = [], []
partitions = zip(train_sizes, np.split(train, train_sizes)[:-1])
for n_train_samples, partial_train in partitions:
train_subset = train[:n_train_samples]
X_train, y_train = _safe_split(estimator, X, y, train_subset)
X_partial_train, y_partial_train = _safe_split(estimator, X, y,
partial_train)
X_test, y_test = _safe_split(estimator, X, y, test, train_subset)
if y_partial_train is None:
estimator.partial_fit(X_partial_train, classes=classes)
else:
estimator.partial_fit(X_partial_train, y_partial_train,
classes=classes)
train_scores.append(_score(estimator, X_train, y_train, scorer))
test_scores.append(_score(estimator, X_test, y_test, scorer))
return np.array((train_scores, test_scores)).T
def validation_curve(estimator, X, y, param_name, param_range, cv=None,
scoring=None, n_jobs=1, pre_dispatch="all", verbose=0):
"""Validation curve.
Determine training and test scores for varying parameter values.
Compute scores for an estimator with different values of a specified
parameter. This is similar to grid search with one parameter. However, this
will also compute training scores and is merely a utility for plotting the
results.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
param_name : string
Name of the parameter that will be varied.
param_range : array-like, shape (n_values,)
The values of the parameter that will be evaluated.
cv : integer, cross-validation generator, optional
If an integer is passed, it is the number of folds (defaults to 3).
Specific cross-validation objects can be passed, see
sklearn.cross_validation module for the list of possible objects
scoring : string, callable or None, optional, default: None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
n_jobs : integer, optional
Number of jobs to run in parallel (default 1).
pre_dispatch : integer or string, optional
Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The string can
be an expression like '2*n_jobs'.
verbose : integer, optional
Controls the verbosity: the higher, the more messages.
Returns
-------
train_scores : array, shape (n_ticks, n_cv_folds)
Scores on training sets.
test_scores : array, shape (n_ticks, n_cv_folds)
Scores on test set.
Notes
-----
See
:ref:`examples/model_selection/plot_validation_curve.py
<example_model_selection_plot_validation_curve.py>`
"""
X, y = indexable(X, y)
cv = _check_cv(cv, X, y, classifier=is_classifier(estimator))
scorer = check_scoring(estimator, scoring=scoring)
parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch,
verbose=verbose)
out = parallel(delayed(_fit_and_score)(
estimator, X, y, scorer, train, test, verbose,
parameters={param_name: v}, fit_params=None, return_train_score=True)
for train, test in cv for v in param_range)
out = np.asarray(out)[:, :2]
n_params = len(param_range)
n_cv_folds = out.shape[0] // n_params
out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0))
return out[0], out[1]