.. currentmodule:: pandas
.. ipython:: python :suppress: import numpy as np np.random.seed(123456) np.set_printoptions(precision=4, suppress=True) import pandas as pd pd.options.display.max_rows = 15 import matplotlib try: matplotlib.style.use('ggplot') except AttributeError: pd.options.display.mpl_style = 'default' import matplotlib.pyplot as plt plt.close('all')
As of pandas version 0.15.0, the memory usage of a dataframe (including
the index) is shown when accessing the info
method of a dataframe. A
configuration option, display.memory_usage
(see :ref:`options`),
specifies if the dataframe's memory usage will be displayed when
invoking the df.info()
method.
For example, the memory usage of the dataframe below is shown
when calling df.info()
:
.. ipython:: python dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]', 'complex128', 'object', 'bool'] n = 5000 data = dict([ (t, np.random.randint(100, size=n).astype(t)) for t in dtypes]) df = pd.DataFrame(data) df['categorical'] = df['object'].astype('category') df.info()
The +
symbol indicates that the true memory usage could be higher, because
pandas does not count the memory used by values in columns with
dtype=object
.
.. versionadded:: 0.17.1
Passing memory_usage='deep'
will enable a more accurate memory usage report,
that accounts for the full usage of the contained objects. This is optional
as it can be expensive to do this deeper introspection.
.. ipython:: python df.info(memory_usage='deep')
By default the display option is set to True
but can be explicitly
overridden by passing the memory_usage
argument when invoking df.info()
.
The memory usage of each column can be found by calling the memory_usage
method. This returns a Series with an index represented by column names
and memory usage of each column shown in bytes. For the dataframe above,
the memory usage of each column and the total memory usage of the
dataframe can be found with the memory_usage method:
.. ipython:: python df.memory_usage() # total memory usage of dataframe df.memory_usage().sum()
By default the memory usage of the dataframe's index is not shown in the
returned Series, the memory usage of the index can be shown by passing
the index=True
argument:
.. ipython:: python df.memory_usage(index=True)
The memory usage displayed by the info
method utilizes the
memory_usage
method to determine the memory usage of a dataframe
while also formatting the output in human-readable units (base-2
representation; i.e., 1KB = 1024 bytes).
See also :ref:`Categorical Memory Usage <categorical.memory>`.
Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. To deal with this issue you should convert the underlying NumPy array to the native system byte order before passing it to Series/DataFrame/Panel constructors using something similar to the following:
.. ipython:: python x = np.array(list(range(10)), '>i4') # big endian newx = x.byteswap().newbyteorder() # force native byteorder s = pd.Series(newx)
See the NumPy documentation on byte order for more details.
Warning
The qt
support is deprecated and will be removed in a future version.
We refer users to the external package pandas-qt.
There is experimental support for visualizing DataFrames in PyQt4 and PySide applications. At the moment you can display and edit the values of the cells in the DataFrame. Qt will take care of displaying just the portion of the DataFrame that is currently visible and the edits will be immediately saved to the underlying DataFrame
To demonstrate this we will create a simple PySide application that will switch
between two editable DataFrames. For this will use the DataFrameModel
class
that handles the access to the DataFrame, and the DataFrameWidget
, which is
just a thin layer around the QTableView
.
import numpy as np
import pandas as pd
from pandas.sandbox.qtpandas import DataFrameModel, DataFrameWidget
from PySide import QtGui, QtCore
# Or if you use PyQt4:
# from PyQt4 import QtGui, QtCore
class MainWidget(QtGui.QWidget):
def __init__(self, parent=None):
super(MainWidget, self).__init__(parent)
# Create two DataFrames
self.df1 = pd.DataFrame(np.arange(9).reshape(3, 3),
columns=['foo', 'bar', 'baz'])
self.df2 = pd.DataFrame({
'int': [1, 2, 3],
'float': [1.5, 2.5, 3.5],
'string': ['a', 'b', 'c'],
'nan': [np.nan, np.nan, np.nan]
}, index=['AAA', 'BBB', 'CCC'],
columns=['int', 'float', 'string', 'nan'])
# Create the widget and set the first DataFrame
self.widget = DataFrameWidget(self.df1)
# Create the buttons for changing DataFrames
self.button_first = QtGui.QPushButton('First')
self.button_first.clicked.connect(self.on_first_click)
self.button_second = QtGui.QPushButton('Second')
self.button_second.clicked.connect(self.on_second_click)
# Set the layout
vbox = QtGui.QVBoxLayout()
vbox.addWidget(self.widget)
hbox = QtGui.QHBoxLayout()
hbox.addWidget(self.button_first)
hbox.addWidget(self.button_second)
vbox.addLayout(hbox)
self.setLayout(vbox)
def on_first_click(self):
'''Sets the first DataFrame'''
self.widget.setDataFrame(self.df1)
def on_second_click(self):
'''Sets the second DataFrame'''
self.widget.setDataFrame(self.df2)
if __name__ == '__main__':
import sys
# Initialize the application
app = QtGui.QApplication(sys.argv)
mw = MainWidget()
mw.show()
app.exec_()