forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseries_methods.py
107 lines (75 loc) · 2.9 KB
/
series_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from .pandas_vb_common import *
class series_constructor_no_data_datetime_index(object):
goal_time = 0.2
def setup(self):
self.dr = pd.date_range(
start=datetime(2015,10,26),
end=datetime(2016,1,1),
freq='10s'
) # ~500k long
def time_series_constructor_no_data_datetime_index(self):
Series(data=None, index=self.dr)
class series_isin_int64(object):
goal_time = 0.2
def setup(self):
self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64')
self.s4 = Series(np.random.randint(1, 100, 10000000)).astype('int64')
self.values = [1, 2]
def time_series_isin_int64(self):
self.s3.isin(self.values)
def time_series_isin_int64_large(self):
self.s4.isin(self.values)
class series_isin_object(object):
goal_time = 0.2
def setup(self):
self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64')
self.values = [1, 2]
self.s4 = self.s3.astype('object')
def time_series_isin_object(self):
self.s4.isin(self.values)
class series_nlargest1(object):
goal_time = 0.2
def setup(self):
self.s1 = Series(np.random.randn(10000))
self.s2 = Series(np.random.randint(1, 10, 10000))
self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64')
self.values = [1, 2]
self.s4 = self.s3.astype('object')
def time_series_nlargest1(self):
self.s1.nlargest(3, take_last=True)
self.s1.nlargest(3, take_last=False)
class series_nlargest2(object):
goal_time = 0.2
def setup(self):
self.s1 = Series(np.random.randn(10000))
self.s2 = Series(np.random.randint(1, 10, 10000))
self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64')
self.values = [1, 2]
self.s4 = self.s3.astype('object')
def time_series_nlargest2(self):
self.s2.nlargest(3, take_last=True)
self.s2.nlargest(3, take_last=False)
class series_nsmallest2(object):
goal_time = 0.2
def setup(self):
self.s1 = Series(np.random.randn(10000))
self.s2 = Series(np.random.randint(1, 10, 10000))
self.s3 = Series(np.random.randint(1, 10, 100000)).astype('int64')
self.values = [1, 2]
self.s4 = self.s3.astype('object')
def time_series_nsmallest2(self):
self.s2.nsmallest(3, take_last=True)
self.s2.nsmallest(3, take_last=False)
class series_dropna_int64(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.randint(1, 10, 1000000))
def time_series_dropna_int64(self):
self.s.dropna()
class series_dropna_datetime(object):
goal_time = 0.2
def setup(self):
self.s = Series(pd.date_range('2000-01-01', freq='S', periods=1000000))
self.s[np.random.randint(1, 1000000, 100)] = pd.NaT
def time_series_dropna_datetime(self):
self.s.dropna()