forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreindex.py
397 lines (292 loc) · 13.1 KB
/
reindex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
from .pandas_vb_common import *
from random import shuffle
class dataframe_reindex(object):
goal_time = 0.2
def setup(self):
self.rng = DatetimeIndex(start='1/1/1970', periods=10000, freq=datetools.Minute())
self.df = DataFrame(np.random.rand(10000, 10), index=self.rng, columns=range(10))
self.df['foo'] = 'bar'
self.rng2 = Index(self.rng[::2])
def time_dataframe_reindex(self):
self.df.reindex(self.rng2)
class frame_drop_dup_inplace(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.K = 10
self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.df = DataFrame({'key1': self.key1, 'key2': self.key2, 'value': np.random.randn((self.N * self.K)), })
self.col_array_list = list(self.df.values.T)
def time_frame_drop_dup_inplace(self):
self.df.drop_duplicates(['key1', 'key2'], inplace=True)
class frame_drop_dup_na_inplace(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.K = 10
self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.df = DataFrame({'key1': self.key1, 'key2': self.key2, 'value': np.random.randn((self.N * self.K)), })
self.col_array_list = list(self.df.values.T)
self.df.ix[:10000, :] = np.nan
def time_frame_drop_dup_na_inplace(self):
self.df.drop_duplicates(['key1', 'key2'], inplace=True)
class frame_drop_duplicates(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.K = 10
self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.df = DataFrame({'key1': self.key1, 'key2': self.key2, 'value': np.random.randn((self.N * self.K)), })
self.col_array_list = list(self.df.values.T)
def time_frame_drop_duplicates(self):
self.df.drop_duplicates(['key1', 'key2'])
class frame_drop_duplicates_int(object):
def setup(self):
np.random.seed(1234)
self.N = 1000000
self.K = 10000
self.key1 = np.random.randint(0,self.K,size=self.N)
self.df = DataFrame({'key1': self.key1})
def time_frame_drop_duplicates_int(self):
self.df.drop_duplicates()
class frame_drop_duplicates_na(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.K = 10
self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.df = DataFrame({'key1': self.key1, 'key2': self.key2, 'value': np.random.randn((self.N * self.K)), })
self.col_array_list = list(self.df.values.T)
self.df.ix[:10000, :] = np.nan
def time_frame_drop_duplicates_na(self):
self.df.drop_duplicates(['key1', 'key2'])
class frame_fillna_many_columns_pad(object):
goal_time = 0.2
def setup(self):
self.values = np.random.randn(1000, 1000)
self.values[::2] = np.nan
self.df = DataFrame(self.values)
def time_frame_fillna_many_columns_pad(self):
self.df.fillna(method='pad')
class frame_reindex_columns(object):
goal_time = 0.2
def setup(self):
self.df = DataFrame(index=range(10000), data=np.random.rand(10000, 30), columns=range(30))
def time_frame_reindex_columns(self):
self.df.reindex(columns=self.df.columns[1:5])
class frame_sort_index_by_columns(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.K = 10
self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.df = DataFrame({'key1': self.key1, 'key2': self.key2, 'value': np.random.randn((self.N * self.K)), })
self.col_array_list = list(self.df.values.T)
def time_frame_sort_index_by_columns(self):
self.df.sort_index(by=['key1', 'key2'])
class lib_fast_zip(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.K = 10
self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.df = DataFrame({'key1': self.key1, 'key2': self.key2, 'value': np.random.randn((self.N * self.K)), })
self.col_array_list = list(self.df.values.T)
def time_lib_fast_zip(self):
lib.fast_zip(self.col_array_list)
class lib_fast_zip_fillna(object):
goal_time = 0.2
def setup(self):
self.N = 10000
self.K = 10
self.key1 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.key2 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.df = DataFrame({'key1': self.key1, 'key2': self.key2, 'value': np.random.randn((self.N * self.K)), })
self.col_array_list = list(self.df.values.T)
self.df.ix[:10000, :] = np.nan
def time_lib_fast_zip_fillna(self):
lib.fast_zip_fillna(self.col_array_list)
class reindex_daterange_backfill(object):
goal_time = 0.2
def setup(self):
self.rng = date_range('1/1/2000', periods=100000, freq=datetools.Minute())
self.ts = Series(np.random.randn(len(self.rng)), index=self.rng)
self.ts2 = self.ts[::2]
self.ts3 = self.ts2.reindex(self.ts.index)
self.ts4 = self.ts3.astype('float32')
def time_reindex_daterange_backfill(self):
self.backfill(self.ts2, self.ts.index)
def pad(self, source_series, target_index):
try:
source_series.reindex(target_index, method='pad')
except:
source_series.reindex(target_index, fillMethod='pad')
def backfill(self, source_series, target_index):
try:
source_series.reindex(target_index, method='backfill')
except:
source_series.reindex(target_index, fillMethod='backfill')
class reindex_daterange_pad(object):
goal_time = 0.2
def setup(self):
self.rng = date_range('1/1/2000', periods=100000, freq=datetools.Minute())
self.ts = Series(np.random.randn(len(self.rng)), index=self.rng)
self.ts2 = self.ts[::2]
self.ts3 = self.ts2.reindex(self.ts.index)
self.ts4 = self.ts3.astype('float32')
def time_reindex_daterange_pad(self):
self.pad(self.ts2, self.ts.index)
def pad(self, source_series, target_index):
try:
source_series.reindex(target_index, method='pad')
except:
source_series.reindex(target_index, fillMethod='pad')
def backfill(self, source_series, target_index):
try:
source_series.reindex(target_index, method='backfill')
except:
source_series.reindex(target_index, fillMethod='backfill')
class reindex_fillna_backfill(object):
goal_time = 0.2
def setup(self):
self.rng = date_range('1/1/2000', periods=100000, freq=datetools.Minute())
self.ts = Series(np.random.randn(len(self.rng)), index=self.rng)
self.ts2 = self.ts[::2]
self.ts3 = self.ts2.reindex(self.ts.index)
self.ts4 = self.ts3.astype('float32')
def time_reindex_fillna_backfill(self):
self.ts3.fillna(method='backfill')
def pad(self, source_series, target_index):
try:
source_series.reindex(target_index, method='pad')
except:
source_series.reindex(target_index, fillMethod='pad')
def backfill(self, source_series, target_index):
try:
source_series.reindex(target_index, method='backfill')
except:
source_series.reindex(target_index, fillMethod='backfill')
class reindex_fillna_backfill_float32(object):
goal_time = 0.2
def setup(self):
self.rng = date_range('1/1/2000', periods=100000, freq=datetools.Minute())
self.ts = Series(np.random.randn(len(self.rng)), index=self.rng)
self.ts2 = self.ts[::2]
self.ts3 = self.ts2.reindex(self.ts.index)
self.ts4 = self.ts3.astype('float32')
def time_reindex_fillna_backfill_float32(self):
self.ts4.fillna(method='backfill')
def pad(self, source_series, target_index):
try:
source_series.reindex(target_index, method='pad')
except:
source_series.reindex(target_index, fillMethod='pad')
def backfill(self, source_series, target_index):
try:
source_series.reindex(target_index, method='backfill')
except:
source_series.reindex(target_index, fillMethod='backfill')
class reindex_fillna_pad(object):
goal_time = 0.2
def setup(self):
self.rng = date_range('1/1/2000', periods=100000, freq=datetools.Minute())
self.ts = Series(np.random.randn(len(self.rng)), index=self.rng)
self.ts2 = self.ts[::2]
self.ts3 = self.ts2.reindex(self.ts.index)
self.ts4 = self.ts3.astype('float32')
def time_reindex_fillna_pad(self):
self.ts3.fillna(method='pad')
def pad(self, source_series, target_index):
try:
source_series.reindex(target_index, method='pad')
except:
source_series.reindex(target_index, fillMethod='pad')
def backfill(self, source_series, target_index):
try:
source_series.reindex(target_index, method='backfill')
except:
source_series.reindex(target_index, fillMethod='backfill')
class reindex_fillna_pad_float32(object):
goal_time = 0.2
def setup(self):
self.rng = date_range('1/1/2000', periods=100000, freq=datetools.Minute())
self.ts = Series(np.random.randn(len(self.rng)), index=self.rng)
self.ts2 = self.ts[::2]
self.ts3 = self.ts2.reindex(self.ts.index)
self.ts4 = self.ts3.astype('float32')
def time_reindex_fillna_pad_float32(self):
self.ts4.fillna(method='pad')
def pad(self, source_series, target_index):
try:
source_series.reindex(target_index, method='pad')
except:
source_series.reindex(target_index, fillMethod='pad')
def backfill(self, source_series, target_index):
try:
source_series.reindex(target_index, method='backfill')
except:
source_series.reindex(target_index, fillMethod='backfill')
class reindex_frame_level_align(object):
goal_time = 0.2
def setup(self):
self.index = MultiIndex(levels=[np.arange(10), np.arange(100), np.arange(100)], labels=[np.arange(10).repeat(10000), np.tile(np.arange(100).repeat(100), 10), np.tile(np.tile(np.arange(100), 100), 10)])
random.shuffle(self.index.values)
self.df = DataFrame(np.random.randn(len(self.index), 4), index=self.index)
self.df_level = DataFrame(np.random.randn(100, 4), index=self.index.levels[1])
def time_reindex_frame_level_align(self):
self.df.align(self.df_level, level=1, copy=False)
class reindex_frame_level_reindex(object):
goal_time = 0.2
def setup(self):
self.index = MultiIndex(levels=[np.arange(10), np.arange(100), np.arange(100)], labels=[np.arange(10).repeat(10000), np.tile(np.arange(100).repeat(100), 10), np.tile(np.tile(np.arange(100), 100), 10)])
random.shuffle(self.index.values)
self.df = DataFrame(np.random.randn(len(self.index), 4), index=self.index)
self.df_level = DataFrame(np.random.randn(100, 4), index=self.index.levels[1])
def time_reindex_frame_level_reindex(self):
self.df_level.reindex(self.df.index, level=1)
class reindex_multiindex(object):
goal_time = 0.2
def setup(self):
self.N = 1000
self.K = 20
self.level1 = tm.makeStringIndex(self.N).values.repeat(self.K)
self.level2 = np.tile(tm.makeStringIndex(self.K).values, self.N)
self.index = MultiIndex.from_arrays([self.level1, self.level2])
self.s1 = Series(np.random.randn((self.N * self.K)), index=self.index)
self.s2 = self.s1[::2]
def time_reindex_multiindex(self):
self.s1.reindex(self.s2.index)
class series_align_irregular_string(object):
goal_time = 0.2
def setup(self):
self.n = 50000
self.indices = tm.makeStringIndex(self.n)
self.subsample_size = 40000
self.x = Series(np.random.randn(50000), self.indices)
self.y = Series(np.random.randn(self.subsample_size), index=self.sample(self.indices, self.subsample_size))
def time_series_align_irregular_string(self):
(self.x + self.y)
def sample(self, values, k):
self.sampler = np.arange(len(values))
shuffle(self.sampler)
return values.take(self.sampler[:k])
class series_drop_duplicates_int(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.randint(0, 1000, size=10000))
self.s2 = Series(np.tile(tm.makeStringIndex(1000).values, 10))
def time_series_drop_duplicates_int(self):
self.s.drop_duplicates()
class series_drop_duplicates_string(object):
goal_time = 0.2
def setup(self):
self.s = Series(np.random.randint(0, 1000, size=10000))
self.s2 = Series(np.tile(tm.makeStringIndex(1000).values, 10))
def time_series_drop_duplicates_string(self):
self.s2.drop_duplicates()