Add two double-precision complex floating-point numbers.
var add = require( '@stdlib/complex/float64/base/add' );
Adds two double-precision complex floating-point numbers.
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var real = require( '@stdlib/complex/float64/real' );
var imag = require( '@stdlib/complex/float64/imag' );
var z = new Complex128( -1.5, 2.5 );
var v = add( z, z );
// returns <Complex128>
var re = real( v );
// returns -3.0
var im = imag( v );
// returns 5.0
Adds two double-precision complex floating-point numbers and assigns results to a provided output array.
var Float64Array = require( '@stdlib/array/float64' );
var out = new Float64Array( 2 );
var v = add.assign( 5.0, 3.0, -2.0, 1.0, out, 1, 0 );
// returns <Float64Array>[ 3.0, 4.0 ]
var bool = ( out === v );
// returns true
The function supports the following parameters:
- re1: real component of the first complex number.
- im1: imaginary component of the first complex number.
- re2: real component of the second complex number.
- im2: imaginary component of the second complex number.
- out: output array.
- strideOut: stride length for
out
. - offsetOut: starting index for
out
.
Adds two double-precision complex floating-point numbers stored in real-valued strided array views and assigns results to a provided strided output array.
var Float64Array = require( '@stdlib/array/float64' );
var z1 = new Float64Array( [ 5.0, 3.0 ] );
var z2 = new Float64Array( [ -2.0, 1.0 ] );
var out = new Float64Array( 2 );
var v = add.strided( z1, 1, 0, z2, 1, 0, out, 1, 0 );
// returns <Float64Array>[ 3.0, 4.0 ]
var bool = ( out === v );
// returns true
The function supports the following parameters:
- z1: first complex number strided array view.
- sz1: stride length for
z1
. - oz1: starting index for
z1
. - z2: second complex number strided array view.
- sz2: stride length for
z2
. - oz2: starting index for
z2
. - out: output array.
- so: stride length for
out
. - oo: starting index for
out
.
var Complex128 = require( '@stdlib/complex/float64/ctor' );
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory;
var add = require( '@stdlib/complex/float64/base/add' );
var rand = discreteUniform( -50, 50 );
var z1;
var z2;
var z3;
var i;
for ( i = 0; i < 100; i++ ) {
z1 = new Complex128( rand(), rand() );
z2 = new Complex128( rand(), rand() );
z3 = add( z1, z2 );
console.log( '(%s) + (%s) = %s', z1.toString(), z2.toString(), z3.toString() );
}
#include "stdlib/complex/float64/base/add.h"
Adds two double-precision complex floating-point numbers.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"
stdlib_complex128_t z = stdlib_complex128( 3.0, -2.0 );
stdlib_complex128_t out = stdlib_base_complex128_add( z, z );
double re = stdlib_complex128_real( out );
// returns 6.0
double im = stdlib_complex128_imag( out );
// returns -4.0
The function accepts the following arguments:
- z1:
[in] stdlib_complex128_t
input value. - z2:
[in] stdlib_complex128_t
input value.
stdlib_complex128_t stdlib_base_complex128_add( const stdlib_complex128_t z1, const stdlib_complex128_t z2 );
#include "stdlib/complex/float64/base/add.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdio.h>
int main( void ) {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, 1.5 ),
stdlib_complex128( 0.0, -0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};
stdlib_complex128_t v;
stdlib_complex128_t y;
double re;
double im;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
stdlib_complex128_reim( v, &re, &im );
printf( "z = %lf + %lfi\n", re, im );
y = stdlib_base_complex128_add( v, v );
stdlib_complex128_reim( y, &re, &im );
printf( "add(z, z) = %lf + %lfi\n", re, im );
}
}
@stdlib/complex/float64/base/div
: divide two complex numbers.@stdlib/complex/float64/base/mul
: multiply two double-precision complex floating-point numbers.@stdlib/complex/float64/base/sub
: subtract two double-precision complex floating-point numbers.