Skip to content

Files

Latest commit

9f85b5d · Apr 25, 2025

History

History

dsumkbn

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Dec 23, 2024
Dec 14, 2024
Jan 2, 2025
Dec 14, 2024
Dec 14, 2024
Dec 14, 2024
Apr 25, 2025
Jan 2, 2025
Jun 16, 2020
Apr 15, 2024
Dec 14, 2024
Apr 15, 2024

dsumkbn

Calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

Usage

var dsumkbn = require( '@stdlib/blas/ext/base/dsumkbn' );

dsumkbn( N, x, strideX )

Computes the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var v = dsumkbn( x.length, x, 1 );
// returns 1.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • strideX: stride length for x.

The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of every other element:

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );

var v = dsumkbn( 4, x, 2 );
// returns 5.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array/float64' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var v = dsumkbn( 4, x1, 2 );
// returns 5.0

dsumkbn.ndarray( N, x, strideX, offsetX )

Computes the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm and alternative indexing semantics.

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );

var v = dsumkbn.ndarray( 3, x, 1, 0 );
// returns 1.0

The function has the following additional parameters:

  • offsetX: starting index for x.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other element starting from the second element:

var Float64Array = require( '@stdlib/array/float64' );

var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );

var v = dsumkbn.ndarray( 4, x, 2, 1 );
// returns 5.0

Notes

  • If N <= 0, both functions return 0.0.

Examples

var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var dsumkbn = require( '@stdlib/blas/ext/base/dsumkbn' );

var x = discreteUniform( 10, -100, 100, {
    'dtype': 'float64'
});
console.log( x );

var v = dsumkbn( x.length, x, 1 );
console.log( v );

C APIs

Usage

#include "stdlib/blas/ext/base/dsumkbn.h"

stdlib_strided_dsumkbn( N, *X, strideX )

Computes the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.

const double x[] = { 1.0, 2.0, 3.0, 4.0 };

double v = stdlib_strided_dsumkbn( 4, x, 1 );
// returns 10.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT stride length for X.
double stdlib_strided_dsumkbn( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );

stdlib_strided_dsumkbn_ndarray( N, *X, strideX, offsetX )

Computes the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm and alternative indexing semantics.

const double x[] = { 1.0, 2.0, 3.0, 4.0 };

double v = stdlib_strided_dsumkbn_ndarray( 4, x, 1, 0 );
// returns 10.0

The function accepts the following arguments:

  • N: [in] CBLAS_INT number of indexed elements.
  • X: [in] double* input array.
  • strideX: [in] CBLAS_INT stride length for X.
  • offsetX: [in] CBLAS_INT starting index for X.
double stdlib_strided_dsumkbn_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );

Examples

#include "stdlib/blas/ext/base/dsumkbn.h"
#include <stdio.h>

int main( void ) {
    // Create a strided array:
    const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };

    // Specify the number of elements:
    const int N = 4;

    // Specify the stride length:
    const int strideX = 2;

    // Compute the sum:
    double v = stdlib_strided_dsumkbn( N, x, strideX );

    // Print the result:
    printf( "sum: %lf\n", v );
}

References

  • Neumaier, Arnold. 1974. "Rounding Error Analysis of Some Methods for Summing Finite Sums." Zeitschrift Für Angewandte Mathematik Und Mechanik 54 (1): 39–51. doi:10.1002/zamm.19740540106.

See Also