Skip to content

Commit 917c248

Browse files
committed
Add namespace Typescript definition
1 parent 5318322 commit 917c248

File tree

3 files changed

+284
-0
lines changed

3 files changed

+284
-0
lines changed
Lines changed: 254 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,254 @@
1+
/*
2+
* @license Apache-2.0
3+
*
4+
* Copyright (c) 2021 The Stdlib Authors.
5+
*
6+
* Licensed under the Apache License, Version 2.0 (the "License");
7+
* you may not use this file except in compliance with the License.
8+
* You may obtain a copy of the License at
9+
*
10+
* http://www.apache.org/licenses/LICENSE-2.0
11+
*
12+
* Unless required by applicable law or agreed to in writing, software
13+
* distributed under the License is distributed on an "AS IS" BASIS,
14+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15+
* See the License for the specific language governing permissions and
16+
* limitations under the License.
17+
*/
18+
19+
// TypeScript Version: 2.0
20+
21+
/* tslint:disable:max-line-length */
22+
/* tslint:disable:max-file-line-count */
23+
24+
import continuedFraction = require( '@stdlib/math/base/tools/continued-fraction' );
25+
import evalpoly = require( '@stdlib/math/base/tools/evalpoly' );
26+
import evalrational = require( '@stdlib/math/base/tools/evalrational' );
27+
import fibpoly = require( '@stdlib/math/base/tools/fibpoly' );
28+
import hermitepoly = require( '@stdlib/math/base/tools/hermitepoly' );
29+
import lucaspoly = require( '@stdlib/math/base/tools/lucaspoly' );
30+
import normhermitepoly = require( '@stdlib/math/base/tools/normhermitepoly' );
31+
import sumSeries = require( '@stdlib/math/base/tools/sum-series' );
32+
33+
/**
34+
* Interface describing the `tools` namespace.
35+
*/
36+
interface Tools {
37+
/**
38+
* Evaluates the continued fraction approximation for the supplied series generator using the modified Lentz algorithm.
39+
*
40+
* ## References
41+
*
42+
* - Lentz, William J. 1976. "Generating bessel functions in Mie scattering calculations using continued fractions." _Applied Optics_ 15 (3): 668–71. doi:[10.1364/AO.15.000668](https://doi.org/10.1364/AO.15.000668).
43+
*
44+
* @param generator - function returning terms of continued fraction expansion
45+
* @param options - function options
46+
* @param options.maxIter - maximum number of iterations (default: 1000)
47+
* @param options.tolerance - further terms are only added as long as the next term is greater than current term times the tolerance (default: 2.22e-16)
48+
* @param options.keep - whether to keep the leading b term (default: false)
49+
* @returns value of continued fraction
50+
*
51+
* @example
52+
* // Continued fraction for (e-1)^(-1):
53+
* var gen = generator();
54+
* var out = continuedFraction( gen );
55+
* // returns ~0.582
56+
*
57+
* function* generator() {
58+
* var i = 0;
59+
* while ( true ) {
60+
* i++;
61+
* yield [ i, i ];
62+
* }
63+
* }
64+
*/
65+
continuedFraction: typeof continuedFraction;
66+
67+
/**
68+
* Evaluates a polynomial.
69+
*
70+
* ## Notes
71+
*
72+
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
73+
*
74+
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
75+
*
76+
*
77+
* @param c - polynomial coefficients sorted in ascending degree
78+
* @param x - value at which to evaluate the polynomial
79+
* @returns evaluated polynomial
80+
*
81+
* @example
82+
* var v = evalpoly( [3.0,2.0,1.0], 10.0 ); // 3*10^0 + 2*10^1 + 1*10^2
83+
* // returns 123.0
84+
*
85+
* @example
86+
* var polyval = evalpoly.factory( [3.0,2.0,1.0] );
87+
*
88+
* var v = polyval( 10.0 ); // => 3*10^0 + 2*10^1 + 1*10^2
89+
* // returns 123.0
90+
*
91+
* v = polyval( 5.0 ); // => 3*5^0 + 2*5^1 + 1*5^2
92+
* // returns 38.0
93+
*/
94+
evalpoly: typeof evalpoly;
95+
96+
/**
97+
* Evaluates a rational function, i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\).
98+
*
99+
* ## Notes
100+
*
101+
* - Coefficients should be sorted in ascending degree.
102+
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
103+
*
104+
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
105+
*
106+
*
107+
* @param P - numerator polynomial coefficients sorted in ascending degree
108+
* @param Q - denominator polynomial coefficients sorted in ascending degree
109+
* @param x - value at which to evaluate the rational function
110+
* @returns evaluated rational function
111+
*
112+
* @example
113+
* var P = [ -6.0, -5.0 ];
114+
* var Q = [ 3.0, 0.5 ];
115+
*
116+
* var v = evalrational( P, Q, 6.0 ); // => ( -6*6^0 - 5*6^1 ) / ( 3*6^0 + 0.5*6^1 ) = (-6-30)/(3+3)
117+
* // returns -6.0
118+
*
119+
* @example
120+
* var P = [ 20.0, 8.0, 3.0 ];
121+
* var Q = [ 10.0, 9.0, 1.0 ];
122+
*
123+
* var rational = evalrational.factory( P, Q );
124+
*
125+
* var v = rational( 10.0 ); // => (20*10^0 + 8*10^1 + 3*10^2) / (10*10^0 + 9*10^1 + 1*10^2) = (20+80+300)/(10+90+100)
126+
* // returns 2.0
127+
*
128+
* v = rational( 2.0 ); // => (20*2^0 + 8*2^1 + 3*2^2) / (10*2^0 + 9*2^1 + 1*2^2) = (20+16+12)/(10+18+4)
129+
* // returns 1.5
130+
*/
131+
evalrational: typeof evalrational;
132+
133+
/**
134+
* Evaluates a Fibonacci polynomial.
135+
*
136+
* @param n - Fibonacci polynomial to evaluate
137+
* @param x - value at which to evaluate a Fibonacci polynomial
138+
* @returns result
139+
*
140+
* @example
141+
* var v = fibpoly( 5, 1.0 );
142+
* // returns 5.0
143+
*
144+
* @example
145+
* var fibpolyval = fibpoly.factory( 5 );
146+
*
147+
* var v = fibpolyval( 1.0 );
148+
* // returns 5.0
149+
*
150+
* v = fibpolyval( 2.0 );
151+
* // returns 29.0
152+
*/
153+
fibpoly: typeof fibpoly;
154+
155+
/**
156+
* Evaluates a physicist's Hermite polynomial.
157+
*
158+
* @param n - nonnegative polynomial degree
159+
* @param x - evaluation point
160+
* @returns function value
161+
*
162+
* @example
163+
* var v = hermitepoly( 1, 1.0 );
164+
* // returns 2.0
165+
*
166+
* @example
167+
* var v = hermitepoly( 1, 0.5 );
168+
* // returns 1.0
169+
*
170+
* @example
171+
* var polyval = hermitepoly.factory( 2 );
172+
*
173+
* var v = polyval( 0.5 );
174+
* // returns -1.0
175+
*/
176+
hermitepoly: typeof hermitepoly;
177+
178+
/**
179+
* Evaluates a Lucas polynomial.
180+
*
181+
* @param n - Lucas polynomial to evaluate
182+
* @param x - value at which to evaluate a Lucas polynomial
183+
* @returns result
184+
*
185+
* @example
186+
* var v = lucaspoly( 5, 1.0 );
187+
* // returns 11.0
188+
*
189+
* @example
190+
* var polyval = lucaspoly.factory( 5 );
191+
*
192+
* var v = polyval( 1.0 );
193+
* // returns 11.0
194+
*
195+
* v = polyval( 2.0 );
196+
* // returns 82.0
197+
*/
198+
lucaspoly: typeof lucaspoly;
199+
200+
/**
201+
* Evaluates a normalized Hermite polynomial.
202+
*
203+
* @param n - nonnegative polynomial degree
204+
* @param x - evaluation point
205+
* @returns function value
206+
*
207+
* @example
208+
* var v = normhermitepoly( 1, 0.5 );
209+
* // returns 0.5
210+
*
211+
* @example
212+
* var polyval = normhermitepoly.factory( 2 );
213+
*
214+
* var v = polyval( 0.5 );
215+
* // returns -0.75
216+
*/
217+
normhermitepoly: typeof normhermitepoly;
218+
219+
/**
220+
* Sum the elements of the series given by the supplied function.
221+
*
222+
* @param generator - series function
223+
* @param options - function options
224+
* @param options.maxTerms - maximum number of terms to be added (default: 1000000)
225+
* @param options.tolerance - further terms are only added as long as the next term is greater than current term times the tolerance (default: 2.22e-16)
226+
* @param options.initialValue - initial value of the resulting sum (default: 0)
227+
* @returns sum of all series terms
228+
*
229+
* @example
230+
* var pow = require( `@stdlib/math/base/special/pow` );
231+
* var gen = geometricSeriesGenerator( 0.9 );
232+
* var out = sumSeries( gen );
233+
* // returns 10.0
234+
*
235+
* function* geometricSeriesGenerator( x ) {
236+
* var exponent = 0;
237+
* while ( true ) {
238+
* yield pow( x, exponent );
239+
* exponent += 1;
240+
* }
241+
* }
242+
*/
243+
sumSeries: typeof sumSeries;
244+
}
245+
246+
/**
247+
* Standard library basic mathematical tools.
248+
*/
249+
declare var tools: Tools;
250+
251+
252+
// EXPORTS //
253+
254+
export = tools;
Lines changed: 29 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,29 @@
1+
/*
2+
* @license Apache-2.0
3+
*
4+
* Copyright (c) 2021 The Stdlib Authors.
5+
*
6+
* Licensed under the Apache License, Version 2.0 (the "License");
7+
* you may not use this file except in compliance with the License.
8+
* You may obtain a copy of the License at
9+
*
10+
* http://www.apache.org/licenses/LICENSE-2.0
11+
*
12+
* Unless required by applicable law or agreed to in writing, software
13+
* distributed under the License is distributed on an "AS IS" BASIS,
14+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15+
* See the License for the specific language governing permissions and
16+
* limitations under the License.
17+
*/
18+
19+
/* tslint:disable:no-unused-expression */
20+
21+
import tools = require( './index' );
22+
23+
24+
// TESTS //
25+
26+
// The exported value is the expected interface...
27+
{
28+
tools; // $ExpectType Tools
29+
}

lib/node_modules/@stdlib/math/base/tools/package.json

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -19,6 +19,7 @@
1919
"lib": "./lib",
2020
"test": "./test"
2121
},
22+
"types": "./docs/types",
2223
"scripts": {},
2324
"homepage": "https://github.com/stdlib-js/stdlib",
2425
"repository": {

0 commit comments

Comments
 (0)