You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
base.cpolar,"var out = base.cpolar( 5.0, 3.0 )\nout = new Float64Array( 2 );\nvar v = base.cpolar( out, 5.0, 3.0 )\nvar bool = ( v === out )\n"
143
143
base.cround,"var out = base.cround( 5.5, 3.3 )\nout = new Float64Array( 2 );\nvar v = base.cround( out, 5.5, 3.3 )\nvar bool = ( v === out )\n"
144
144
base.croundn,"var out = base.croundn( 5.555, -3.336, -2 )\nout = new Float64Array( 2 );\nvar v = base.croundn( out, 5.555, -3.336, -2 )\nvar bool = ( v === out )\n"
145
+
base.csch,"var y = base.csch( +0.0 )\nvar y = base.csch( -0.0 )\nvar y = base.csch( +Infinity )\nvar y = base.csch( -Infinity )\ny = base.csch( 2.0 )\ny = base.csch( -2.0 )\ny = base.csch( NaN )\n"
145
146
base.csignum,"var out = base.csignum( -4.2, 5.5 )\nout = new Float64Array( 2 );\nvar v = base.csignum( out, -4.2, 5.5 )\nvar bool = ( v === out )\n"
146
147
base.csub,"var z1 = new Complex128( 5.0, 3.0 )\nvar z2 = new Complex128( -2.0, 1.0 )\nvar out = base.csub( z1, z2 )\nvar re = real( out )\nvar im = imag( out )\n"
147
148
base.csubf,"var z1 = new Complex64( 5.0, 3.0 )\nvar z2 = new Complex64( -2.0, 1.0 )\nvar out = base.csubf( z1, z2 )\nvar re = real( out )\nvar im = imag( out )\n"
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/repl/help/data/data.csv
+2-1
Original file line number
Diff line number
Diff line change
@@ -66,6 +66,7 @@ base.acoth,"\nbase.acoth( x )\n Computes the inverse hyperbolic cotangent of
66
66
base.acovercos,"\nbase.acovercos( x )\n Computes the inverse coversed cosine.\n\n The inverse coversed cosine is defined as `asin(1+x)`.\n\n If `x < -2`, `x > 0`, or `x` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Inverse coversed cosine.\n\n Examples\n --------\n > var y = base.acovercos( -1.5 )\n ~-0.5236\n > y = base.acovercos( -0.0 )\n ~1.5708\n\n See Also\n --------\n base.acoversin, base.avercos, base.covercos, base.vercos\n"
67
67
base.acoversin,"\nbase.acoversin( x )\n Computes the inverse coversed sine.\n\n The inverse coversed sine is defined as `asin(1-x)`.\n\n If `x < 0`, `x > 2`, or `x` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Inverse coversed sine.\n\n Examples\n --------\n > var y = base.acoversin( 1.5 )\n ~-0.5236\n > y = base.acoversin( 0.0 )\n ~1.5708\n\n See Also\n --------\n base.acovercos, base.aversin, base.coversin, base.versin\n"
68
68
base.acsc,"\nbase.acsc( x )\n Computes the arccosecant of a number.\n\n If `|x| < 1`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Arccosecant (in radians).\n\n Examples\n --------\n > var y = base.acsc( 1.0 )\n ~1.57\n > y = base.acsc( PI )\n ~0.32\n > y = base.acsc( -PI )\n ~-0.32\n > y = base.acsc( NaN )\n NaN\n\n See Also\n --------\n base.acot, base.asin\n"
69
+
base.acsch,"\nbase.acsch( x )\n Computes the hyperbolic arccosecant of a number.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Hyperbolic arccosecant.\n\n Examples\n --------\n > var y = base.acsch( 0.0 )\n Infinity\n > y = base.acsch( -1.0 )\n ~-0.881\n > y = base.acsch( NaN )\n NaN\n\n See Also\n --------\n base.acoth, base.acsc, base.asech, base.asinh, base.csch\n"
69
70
base.add,"\nbase.add( x, y )\n Computes the sum of two double-precision floating-point numbers `x` and `y`.\n\n Parameters\n ----------\n x: number\n First input value.\n\n y: number\n Second input value.\n\n Returns\n -------\n z: number\n Sum.\n\n Examples\n --------\n > var v = base.add( -1.0, 5.0 )\n 4.0\n > v = base.add( 2.0, 5.0 )\n 7.0\n > v = base.add( 0.0, 5.0 )\n 5.0\n > v = base.add( -0.0, 0.0 )\n 0.0\n > v = base.add( NaN, NaN )\n NaN\n\n See Also\n --------\n base.mul, base.sub\n"
70
71
base.addf,"\nbase.addf( x, y )\n Computes the sum of two single-precision floating-point numbers `x` and `y`.\n\n Parameters\n ----------\n x: number\n First input value.\n\n y: number\n Second input value.\n\n Returns\n -------\n z: number\n Sum.\n\n Examples\n --------\n > var v = base.addf( -1.0, 5.0 )\n 4.0\n > v = base.addf( 2.0, 5.0 )\n 7.0\n > v = base.addf( 0.0, 5.0 )\n 5.0\n > v = base.addf( -0.0, 0.0 )\n 0.0\n > v = base.addf( NaN, NaN )\n NaN\n\n See Also\n --------\n base.add, base.mulf, base.subf\n"
71
72
base.ahavercos,"\nbase.ahavercos( x )\n Computes the inverse half-value versed cosine.\n\n The inverse half-value versed cosine is defined as `2*acos(sqrt(x))`.\n\n If `x < 0`, `x > 1`, or `x` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Inverse half-value versed cosine.\n\n Examples\n --------\n > var y = base.ahavercos( 0.5 )\n ~1.5708\n > y = base.ahavercos( 0.0 )\n ~3.1416\n\n See Also\n --------\n base.ahaversin, base.havercos, base.vercos\n"
@@ -135,7 +136,7 @@ base.cosh,"\nbase.cosh( x )\n Computes the hyperbolic cosine of a number.\n\n
135
136
base.cosm1,"\nbase.cosm1( x )\n Computes the cosine of a number minus one.\n\n This function should be used instead of manually calculating `cos(x)-1` when\n `x` is near unity.\n\n Parameters\n ----------\n x: number\n Input value (in radians).\n\n Returns\n -------\n y: number\n Cosine minus one.\n\n Examples\n --------\n > var y = base.cosm1( 0.0 )\n 0.0\n > y = base.cosm1( PI/4.0 )\n ~-0.293\n > y = base.cosm1( -PI/6.0 )\n ~-0.134\n > y = base.cosm1( NaN )\n NaN\n\n See Also\n --------\n base.cos\n"
136
137
base.cospi,"\nbase.cospi( x )\n Computes the value of `cos(πx)`.\n\n This function computes `cos(πx)` more accurately than the obvious approach,\n especially for large `x`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.cospi( 0.0 )\n 1.0\n > y = base.cospi( 0.5 )\n 0.0\n > y = base.cospi( 0.1 )\n ~0.951\n > y = base.cospi( NaN )\n NaN\n\n See Also\n --------\n base.cos\n"
137
138
base.cot,"\nbase.cot( x )\n Computes the cotangent of a number.\n\n Parameters\n ----------\n x: number\n Input value (in radians).\n\n Returns\n -------\n y: number\n Cotangent.\n\n Examples\n --------\n > var y = base.cot( 0.0 )\n Infinity\n > y = base.cot( -PI/4.0 )\n ~-1.0\n > y = base.cot( PI/4.0 )\n ~1.0\n > y = base.cot( NaN )\n NaN\n\n See Also\n --------\n base.tan\n"
138
-
base.coth,"\nbase.coth( x )\n Computes the hyperbolic cotangent of a number.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Hyperbolic cotangent.\n\n Examples\n --------\n > var y = base.coth( 0.0 )\n Infinity\n > y = base.coth( -0.0 )\n -Infinity\n > y = base.coth( 2.0 )\n ~1.0373\n > y = base.coth( -2.0 )\n ~-1.0373\n > y = base.coth( +Infinity )\n ~1\n > y = base.coth( -Infinity )\n ~-1\n > y = base.coth( NaN )\n NaN\n\n See Also\n --------\n base.acoth, base.cot, base.tanh\n"
139
+
base.coth,"\nbase.coth( x )\n Computes the hyperbolic cotangent of a number.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Hyperbolic cotangent.\n\n Examples\n --------\n > var y = base.coth( 0.0 )\n Infinity\n > y = base.coth( -0.0 )\n -Infinity\n > y = base.coth( 2.0 )\n ~1.0373\n > y = base.coth( -2.0 )\n ~-1.0373\n > y = base.coth( +Infinity )\n ~1\n > y = base.coth( -Infinity )\n ~-1\n > y = base.coth( NaN )\n NaN\n\n See Also\n --------\n base.acoth, base.cot, base.csch, base.tanh\n"
139
140
base.covercos,"\nbase.covercos( x )\n Computes the coversed cosine.\n\n The coversed cosine is defined as `1 + sin(x)`.\n\n Parameters\n ----------\n x: number\n Input value (in radians).\n\n Returns\n -------\n y: number\n Coversed cosine.\n\n Examples\n --------\n > var y = base.covercos( 3.14 )\n ~1.0016\n > y = base.covercos( -4.2 )\n ~1.8716\n > y = base.covercos( -4.6 )\n ~1.9937\n > y = base.covercos( 9.5 )\n ~0.9248\n > y = base.covercos( -0.0 )\n 1.0\n\n See Also\n --------\n base.coversin, base.vercos\n"
140
141
base.coversin,"\nbase.coversin( x )\n Computes the coversed sine.\n\n The coversed sine is defined as `1 - sin(x)`.\n\n Parameters\n ----------\n x: number\n Input value (in radians).\n\n Returns\n -------\n y: number\n Coversed sine.\n\n Examples\n --------\n > var y = base.coversin( 3.14 )\n ~0.9984\n > y = base.coversin( -4.2 )\n ~0.1284\n > y = base.coversin( -4.6 )\n ~0.0063\n > y = base.coversin( 9.5 )\n ~1.0752\n > y = base.coversin( -0.0 )\n 1.0\n\n See Also\n --------\n base.covercos, base.versin\n"
141
142
base.cphase,"\nbase.cphase( re, im )\n Computes the argument of a complex number in radians.\n\n The argument of a complex number, also known as the phase, is the angle of\n the radius extending from the origin to the complex number plotted in the\n complex plane and the positive real axis.\n\n Parameters\n ----------\n re: number\n Real component.\n\n im: number\n Imaginary component.\n\n Returns\n -------\n phi: number\n Argument.\n\n Examples\n --------\n > var phi = base.cphase( 5.0, 3.0 )\n ~0.5404\n\n See Also\n --------\n base.cabs\n"
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/repl/info/data/data.csv
+1
Original file line number
Diff line number
Diff line change
@@ -142,6 +142,7 @@ base.cphase,"\nbase.cphase( re:number, im:number )\n Computes the argument of
142
142
base.cpolar,"\nbase.cpolar( [out:Array|TypedArray|Object,] re:number, im:number )\n Returns the absolute value and phase of a complex number.\n"
143
143
base.cround,"\nbase.cround( [out:Array|TypedArray|Object,] re:number, im:number )\n Rounds a complex number to the nearest integer.\n"
144
144
base.croundn,"\nbase.croundn( [out:Array|TypedArray|Object,] re:number, im:number, n:integer )\n Rounds a complex number to the nearest multiple of `10^n`.\n"
145
+
base.csch,"\nbase.csch( x:number )\n Computes the hyperbolic cosecant of a number.\n"
145
146
base.csignum,"\nbase.csignum( [out:Array|TypedArray|Object,] re:number, im:number )\n Evaluates the signum function of a complex number.\n"
146
147
base.csub,"\nbase.csub( z1:Complex128, z2:Complex128 )\n Subtracts two double-precision complex floating-point numbers.\n"
147
148
base.csubf,"\nbase.csubf( z1:Complex64, z2:Complex64 )\n Subtracts two single-precision complex floating-point numbers.\n"
0 commit comments