You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/repl/help/lib/db.js
+1Lines changed: 1 addition & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -612,6 +612,7 @@ module.exports = {
612
612
"base.maxabs": "\nbase.maxabs( [x[, y[, ...args]]] )\n Returns the maximum absolute value.\n\n If any argument is `NaN`, the function returns `NaN`.\n\n When an empty set is considered a subset of the extended reals (all real\n numbers, including positive and negative infinity), negative infinity is the\n least upper bound. Similar to zero being the identity element for the sum of\n an empty set and to one being the identity element for the product of an\n empty set, negative infinity is the identity element for the maximum, and\n thus, if not provided any arguments, the function returns `+infinity` (i.e.,\n the absolute value of `-infinity`).\n\n Parameters\n ----------\n x: number (optional)\n First number.\n\n y: number (optional)\n Second number.\n\n args: ...number (optional)\n Numbers.\n\n Returns\n -------\n out: number\n Maximum absolute value.\n\n Examples\n --------\n > var v = base.maxabs( 3.14, -4.2 )\n 4.2\n > v = base.maxabs( 5.9, 3.14, 4.2 )\n 5.9\n > v = base.maxabs( 3.14, NaN )\n NaN\n > v = base.maxabs( +0.0, -0.0 )\n +0.0\n\n See Also\n --------\n base.max, base.minabs\n",
613
613
"base.min": "\nbase.min( [x[, y[, ...args]]] )\n Returns the minimum value.\n\n If any argument is `NaN`, the function returns `NaN`.\n\n When an empty set is considered a subset of the extended reals (all real\n numbers, including positive and negative infinity), positive infinity is the\n greatest lower bound. Similar to zero being the identity element for the sum\n of an empty set and to one being the identity element for the product of an\n empty set, positive infinity is the identity element for the minimum, and\n thus, if not provided any arguments, the function returns positive infinity.\n\n Parameters\n ----------\n x: number (optional)\n First number.\n\n y: number (optional)\n Second number.\n\n args: ...number (optional)\n Numbers.\n\n Returns\n -------\n out: number\n Minimum value.\n\n Examples\n --------\n > var v = base.min( 3.14, 4.2 )\n 3.14\n > v = base.min( 5.9, 3.14, 4.2 )\n 3.14\n > v = base.min( 3.14, NaN )\n NaN\n > v = base.min( +0.0, -0.0 )\n -0.0\n\n See Also\n --------\n base.max, base.minabs\n",
614
614
"base.minabs": "\nbase.minabs( [x[, y[, ...args]]] )\n Returns the minimum absolute value.\n\n If any argument is `NaN`, the function returns `NaN`.\n\n When an empty set is considered a subset of the extended reals (all real\n numbers, including positive and negative infinity), positive infinity is the\n greatest upper bound. Similar to zero being the identity element for the sum\n of an empty set and to one being the identity element for the product of an\n empty set, positive infinity is the identity element for the minimum, and\n thus, if not provided any arguments, the function returns positive infinity.\n\n Parameters\n ----------\n x: number (optional)\n First number.\n\n y: number (optional)\n Second number.\n\n args: ...number (optional)\n Numbers.\n\n Returns\n -------\n out: number\n Minimum absolute value.\n\n Examples\n --------\n > var v = base.minabs( 3.14, -4.2 )\n 3.14\n > v = base.minabs( 5.9, 3.14, 4.2 )\n 3.14\n > v = base.minabs( 3.14, NaN )\n NaN\n > v = base.minabs( +0.0, -0.0 )\n +0.0\n\n See Also\n --------\n base.maxabs, base.min\n",
615
+
"base.minmax": "\nbase.minmax( [out,] x[, y[, ...args]] )\n Returns the minimum and maximum values.\n\n If any argument is `NaN`, the function returns `NaN` for both the minimum\n and maximum values.\n\n Parameters\n ----------\n out: Array|TypedArray|Object (optional)\n Output object.\n\n x: number\n First number.\n\n y: number (optional)\n Second number.\n\n args: ...number (optional)\n Numbers.\n\n Returns\n -------\n out: Array|TypedArray|Object\n Minimum and maximum values.\n\n Examples\n --------\n > var v = base.minmax( 3.14, 4.2 )\n [ 3.14, 4.2 ]\n > v = base.minmax( 5.9, 3.14, 4.2 )\n [ 3.14, 5.9 ]\n > v = base.minmax( 3.14, NaN )\n [ NaN, NaN ]\n > v = base.minmax( +0.0, -0.0 )\n [ -0.0, +0.0 ]\n > v = base.minmax( 3.14 )\n [ 3.14, 3.14 ]\n > var out = new Array( 2 );\n > v = base.minmax( out, 3.14 )\n [ 3.14, 3.14 ]\n > var bool = ( v === out )\n true\n\n See Also\n --------\n base.max, base.min\n",
615
616
"base.modf": "\nbase.modf( x )\n Decomposes a double-precision floating-point number into integral and\n fractional parts, each having the same type and sign as the input value.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n parts: Array<double>\n Array containing integral and fractional parts.\n\n Examples\n --------\n > var parts = base.modf( 3.14 )\n [ 3.0, 0.14000000000000012 ]\n > parts = base.modf( 3.14 )\n [ 3.0, 0.14000000000000012 ]\n > parts = base.modf( +0.0 )\n [ +0.0, +0.0 ]\n > parts = base.modf( -0.0 )\n [ -0.0, -0.0 ]\n > parts = base.modf( PINF )\n [ Infinity, +0.0 ]\n > parts = base.modf( NINF )\n [ -Infinity, -0.0 ]\n > parts = base.modf( NaN )\n [ NaN, NaN ]\n\n",
616
617
"base.negafibonacci": "\nbase.negafibonacci( n )\n Computes the nth negaFibonacci number.\n\n The negaFibonacci numbers follow the recurrence relation\n\n F_{n-2} = F_{n} - F_{n-1}\n\n with seed values F_0 = 0 and F_{-1} = 1.\n\n If `|n|` is greater than `78`, the function returns `NaN` as larger\n negaFibonacci numbers cannot be accurately represented due to limitations of\n double-precision floating-point format.\n\n If not provided a non-positive integer value, the function returns `NaN`.\n\n If provided `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n n: integer\n Input value.\n\n Returns\n -------\n y: integer\n NegaFibonacci number.\n\n Examples\n --------\n > var y = base.negafibonacci( 0 )\n 0\n > y = base.negafibonacci( -1 )\n 1\n > y = base.negafibonacci( -2 )\n -1\n > y = base.negafibonacci( -3 )\n 2\n > y = base.negafibonacci( -4 )\n -3\n > y = base.negafibonacci( -79 )\n NaN\n > y = base.negafibonacci( -80 )\n NaN\n > y = base.negafibonacci( NaN )\n NaN\n\n See Also\n --------\n base.fibonacci, base.negalucas\n",
617
618
"base.negalucas": "\nbase.negalucas( n )\n Computes the nth negaLucas number.\n\n The negaLucas numbers follow the recurrence relation\n\n L_{n-2} = L_{n} - L_{n-1}\n\n with seed values L_0 = 2 and L_{-1} = -1.\n\n If `|n|` is greater than `76`, the function returns `NaN` as larger\n negaLucas numbers cannot be accurately represented due to limitations of\n double-precision floating-point format.\n\n If not provided a non-positive integer value, the function returns `NaN`.\n\n If provided `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n n: integer\n Input value.\n\n Returns\n -------\n y: integer\n NegaLucas number.\n\n Examples\n --------\n > var y = base.negalucas( 0 )\n 2\n > y = base.negalucas( -1 )\n -1\n > y = base.negalucas( -2 )\n 3\n > y = base.negalucas( -3 )\n -4\n > y = base.negalucas( -4 )\n 7\n > y = base.negalucas( -77 )\n NaN\n > y = base.negalucas( -78 )\n NaN\n > y = base.negalucas( NaN )\n NaN\n\n See Also\n --------\n base.fibonacci, base.lucas, base.negafibonacci\n",
0 commit comments