You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
base.cmul,"var z1 = new Complex128( 5.0, 3.0 )\nvar z2 = new Complex128( -2.0, 1.0 )\nvar out = base.cmul( z1, z2 )\nvar re = real( out )\nvar im = imag( out )\n"
134
134
base.cmulf,"var z1 = new Complex64( 5.0, 3.0 )\nvar z2 = new Complex64( -2.0, 1.0 )\nvar out = base.cmulf( z1, z2 )\nvar re = realf( out )\nvar im = imagf( out )\n"
135
135
base.cneg,"var z = new Complex128( -4.2, 5.5 )\nvar v = base.cneg( z )\nvar re = real( v )\nvar im = imag( v )\n"
136
+
base.cnegf,"var z = new Complex64( -4.0, 5.0 )\nvar v = base.cnegf( z )\nvar re = realf( v )\nvar im = imagf( v )\n"
136
137
base.continuedFraction,"function closure() {\nvar i = 0;\nreturn function() {\n i += 1;\n return [ i, i ];\n};\n };\nvar gen = closure();\nvar out = base.continuedFraction( gen )\nfunction* generator() {\n var i = 0;\n while ( true ) {\n i += 1;\n yield [ i, i ];\n }\n };\ngen = generator();\nout = base.continuedFraction( gen )\nout = base.continuedFraction( generator(), { 'keep': true } )\nout = base.continuedFraction( generator(), { 'maxIter': 10 } )\nout = base.continuedFraction( generator(), { 'tolerance': 1e-1 } )\n"
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/repl/help/data/data.csv
+2-1
Original file line number
Diff line number
Diff line change
@@ -72,6 +72,7 @@ base.acoversin,"\nbase.acoversin( x )\n Computes the inverse coversed sine.\n
72
72
base.acsc,"\nbase.acsc( x )\n Computes the arccosecant of a number.\n\n If `|x| < 1`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Arccosecant (in radians).\n\n Examples\n --------\n > var y = base.acsc( 1.0 )\n ~1.57\n > y = base.acsc( PI )\n ~0.32\n > y = base.acsc( -PI )\n ~-0.32\n > y = base.acsc( NaN )\n NaN\n\n See Also\n --------\n base.acot, base.acsch, base.asec, base.asin\n"
73
73
base.acsch,"\nbase.acsch( x )\n Computes the hyperbolic arccosecant of a number.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Hyperbolic arccosecant.\n\n Examples\n --------\n > var y = base.acsch( 0.0 )\n Infinity\n > y = base.acsch( -1.0 )\n ~-0.881\n > y = base.acsch( NaN )\n NaN\n\n See Also\n --------\n base.acoth, base.acsc, base.asech, base.asinh, base.csch\n"
74
74
base.add,"\nbase.add( x, y )\n Computes the sum of two double-precision floating-point numbers `x` and `y`.\n\n Parameters\n ----------\n x: number\n First input value.\n\n y: number\n Second input value.\n\n Returns\n -------\n z: number\n Sum.\n\n Examples\n --------\n > var v = base.add( -1.0, 5.0 )\n 4.0\n > v = base.add( 2.0, 5.0 )\n 7.0\n > v = base.add( 0.0, 5.0 )\n 5.0\n > v = base.add( -0.0, 0.0 )\n 0.0\n > v = base.add( NaN, NaN )\n NaN\n\n See Also\n --------\n base.div, base.mul, base.sub\n"
75
+
base.add3,"\nbase.add3( x, y, z )\n Computes the sum of three double-precision floating-point numbers.\n\n Parameters\n ----------\n x: number\n First input value.\n\n y: number\n Second input value.\n\n z: number\n Third input value.\n\n Returns\n -------\n out: number\n Sum.\n\n Examples\n --------\n > var v = base.add3( -1.0, 5.0, 2.0 )\n 6.0\n > v = base.add3( 2.0, 5.0, 2.0 )\n 9.0\n > v = base.add3( 0.0, 5.0, 2.0 )\n 7.0\n > v = base.add3( -0.0, 0.0, -0.0 )\n 0.0\n > v = base.add3( NaN, NaN, NaN )\n NaN\n\n See Also\n --------\n base.add\n"
75
76
base.addf,"\nbase.addf( x, y )\n Computes the sum of two single-precision floating-point numbers `x` and `y`.\n\n Parameters\n ----------\n x: number\n First input value.\n\n y: number\n Second input value.\n\n Returns\n -------\n z: number\n Sum.\n\n Examples\n --------\n > var v = base.addf( -1.0, 5.0 )\n 4.0\n > v = base.addf( 2.0, 5.0 )\n 7.0\n > v = base.addf( 0.0, 5.0 )\n 5.0\n > v = base.addf( -0.0, 0.0 )\n 0.0\n > v = base.addf( NaN, NaN )\n NaN\n\n See Also\n --------\n base.add, base.divf, base.mulf, base.subf\n"
76
77
base.ahavercos,"\nbase.ahavercos( x )\n Computes the inverse half-value versed cosine.\n\n The inverse half-value versed cosine is defined as `2*acos(sqrt(x))`.\n\n If `x < 0`, `x > 1`, or `x` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Inverse half-value versed cosine.\n\n Examples\n --------\n > var y = base.ahavercos( 0.5 )\n ~1.5708\n > y = base.ahavercos( 0.0 )\n ~3.1416\n\n See Also\n --------\n base.ahaversin, base.havercos, base.vercos\n"
77
78
base.ahaversin,"\nbase.ahaversin( x )\n Computes the inverse half-value versed sine.\n\n The inverse half-value versed sine is defined as `2*asin(sqrt(x))`.\n\n If `x < 0`, `x > 1`, or `x` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Inverse half-value versed sine.\n\n Examples\n --------\n > var y = base.ahaversin( 0.5 )\n ~1.5708\n > y = base.ahaversin( 0.0 )\n 0.0\n\n See Also\n --------\n base.ahavercos, base.haversin, base.versin\n"
@@ -122,7 +123,7 @@ base.ceiln,"\nbase.ceiln( x, n )\n Rounds a numeric value to the nearest mult
122
123
base.ceilsd,"\nbase.ceilsd( x, n[, b] )\n Rounds a numeric value to the nearest number toward positive infinity with\n `n` significant figures.\n\n Parameters\n ----------\n x: number\n Input value.\n\n n: integer\n Number of significant figures. Must be greater than 0.\n\n b: integer (optional)\n Base. Must be greater than 0. Default: 10.\n\n Returns\n -------\n y: number\n Rounded value.\n\n Examples\n --------\n > var y = base.ceilsd( 3.14159, 5 )\n 3.1416\n > y = base.ceilsd( 3.14159, 1 )\n 4.0\n > y = base.ceilsd( 12368.0, 2 )\n 13000.0\n > y = base.ceilsd( 0.0313, 2, 2 )\n 0.046875\n\n See Also\n --------\n base.ceil, base.floorsd, base.roundsd, base.truncsd\n"
123
124
base.cexp,"\nbase.cexp( z )\n Evaluates the exponential function for a double-precision complex floating-\n point number.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n Returns\n -------\n out: Complex128\n Complex number.\n\n Examples\n --------\n > var y = base.cexp( new Complex128( 0.0, 0.0 ) )\n <Complex128>\n > var re = real( y )\n 1.0\n > var im = imag( y )\n 0.0\n > y = base.cexp( new Complex128( 0.0, 1.0 ) )\n <Complex128>\n > re = real( y )\n ~0.540\n > im = imag( y )\n ~0.841\n\n"
124
125
base.cflipsign,"\nbase.cflipsign( z, y )\n Returns a double-precision complex floating-point number with the same\n magnitude as `z` and the sign of `y*z`.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n y: number\n Number from which to derive the sign.\n\n Returns\n -------\n out: Complex128\n Result.\n\n Examples\n --------\n > var v = base.cflipsign( new Complex128( -4.2, 5.5 ), -9.0 )\n <Complex128>\n > var re = real( v )\n 4.2\n > var im = imag( v )\n -5.5\n\n See Also\n --------\n base.cneg, base.csignum\n"
125
-
base.cflipsignf,"\nbase.cflipsignf( z, y )\n Returns a single-precision complex floating-point number with the same\n magnitude as `z` and the sign of `y*z`.\n\n Parameters\n ----------\n z: Complex64\n Complex number.\n\n y: number\n Number from which to derive the sign.\n\n Returns\n -------\n out: Complex64\n Result.\n\n Examples\n --------\n > var v = base.cflipsignf( new Complex64( -4.0, 5.0 ), -9.0 )\n <Complex64>\n > var re = real( v )\n 4.0\n > var im = imag( v )\n -5.0\n\n See Also\n --------\n base.cflipsign\n"
126
+
base.cflipsignf,"\nbase.cflipsignf( z, y )\n Returns a single-precision complex floating-point number with the same\n magnitude as `z` and the sign of `y*z`.\n\n Parameters\n ----------\n z: Complex64\n Complex number.\n\n y: number\n Number from which to derive the sign.\n\n Returns\n -------\n out: Complex64\n Result.\n\n Examples\n --------\n > var v = base.cflipsignf( new Complex64( -4.0, 5.0 ), -9.0 )\n <Complex64>\n > var re = real( v )\n 4.0\n > var im = imag( v )\n -5.0\n\n See Also\n --------\n base.cnegf, base.cflipsign\n"
126
127
base.cfloor,"\nbase.cfloor( z )\n Rounds a double-precision complex floating-point number toward negative\n infinity.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n Returns\n -------\n out: Complex128\n Result.\n\n Examples\n --------\n > var v = base.cfloor( new Complex128( 5.5, 3.3 ) )\n <Complex128>\n > var re = real( v )\n 5.0\n > var im = imag( v )\n 3.0\n\n See Also\n --------\n base.cceil, base.cfloorn, base.cround\n"
127
128
base.cfloorn,"\nbase.cfloorn( z, n )\n Rounds each component of a double-precision complex floating-point number\n to the nearest multiple of `10^n` toward negative infinity.\n\n Parameters\n ----------\n z: Complex128\n Complex number.\n\n n: integer\n Integer power of 10.\n\n Returns\n -------\n z: Complex128\n Result.\n\n Examples\n --------\n > var v = base.cfloorn( new Complex128( 5.555, -3.333 ), -2 )\n <Complex128>\n > var re = real( v )\n 5.55\n > var im = imag( v )\n -3.34\n\n See Also\n --------\n base.cceiln, base.cfloor, base.croundn\n"
128
129
base.cidentity,"\nbase.cidentity( z )\n Evaluates the identity function for a double-precision complex floating-\n point number.\n\n Parameters\n ----------\n z: Complex128\n Input value.\n\n Returns\n -------\n v: Complex128\n Input value.\n\n Examples\n --------\n > var v = base.cidentity( new Complex128( -1.0, 2.0 ) )\n <Complex128>\n > var re = real( v )\n -1.0\n > var img = imag( v )\n 2.0\n\n See Also\n --------\n base.cidentityf, base.identity\n"
base.cmul,"\nbase.cmul( z1:Complex128, z2:Complex128 )\n Multiplies two double-precision complex floating-point numbers.\n"
134
134
base.cmulf,"\nbase.cmulf( z1:Complex64, z2:Complex64 )\n Multiplies two single-precision complex floating-point numbers.\n"
135
135
base.cneg,"\nbase.cneg( z )\n Negates a double-precision complex floating-point number.\n"
136
+
base.cnegf,"\nbase.cnegf( z )\n Negates a single-precision complex floating-point number.\n"
136
137
base.continuedFraction,"\nbase.continuedFraction( generator:Function[, options:Object] )\n Evaluates the continued fraction approximation for the supplied series\n generator using the modified Lentz algorithm.\n"
137
138
base.copysign,"\nbase.copysign( x:number, y:number )\n Returns a double-precision floating-point number with the magnitude of `x`\n and the sign of `y`.\n"
138
139
base.copysignf,"\nbase.copysignf( x:number, y:number )\n Returns a single-precision floating-point number with the magnitude of `x`\n and the sign of `y`.\n"
0 commit comments