-
-
Notifications
You must be signed in to change notification settings - Fork 804
/
Copy pathmain.c
149 lines (135 loc) · 4.39 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/**
* @license Apache-2.0
*
* Copyright (c) 2022 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
* ## Notice
*
* The original C code, long comment, copyright, license, and constants are from [Cephes]{@link http://www.netlib.org/cephes}. The implementation follows the original, but has been modified according to project conventions.
*
* ```text
* Copyright 1984, 1991, 2000 by Stephen L. Moshier
*
* Some software in this archive may be from the book _Methods and Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster International, 1989) or from the Cephes Mathematical Library, a commercial product. In either event, it is copyrighted by the author. What you see here may be used freely but it comes with no support or guarantee.
*
* Stephen L. Moshier
* moshier@na-net.ornl.gov
* ```
*/
#include "stdlib/math/base/special/exp10.h"
#include "stdlib/math/base/special/floor.h"
#include "stdlib/math/base/special/ldexp.h"
#include "stdlib/math/base/assert/is_nan.h"
#include "stdlib/constants/float64/max_base10_exponent.h"
#include "stdlib/constants/float64/min_base10_exponent.h"
#include "stdlib/constants/float64/pinf.h"
#include <stdint.h>
static const double LOG210 = 3.32192809488736234787e0;
static const double LG102A = 3.01025390625000000000e-1;
static const double LG102B = 4.60503898119521373889e-6;
/* Begin auto-generated functions. The following functions are auto-generated. Do not edit directly. */
// BEGIN: polyval_p
/**
* Evaluates a polynomial.
*
* ## Notes
*
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
* @param x value at which to evaluate the polynomial
* @return evaluated polynomial
*/
static double polyval_p( const double x ) {
return 2394.2374120738828 + (x * (406.7172899368727 + (x * (11.745273255434405 + (x * 0.040996251979858706)))));
}
// END: polyval_p
// BEGIN: polyval_q
/**
* Evaluates a polynomial.
*
* ## Notes
*
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
* @param x value at which to evaluate the polynomial
* @return evaluated polynomial
*/
static double polyval_q( const double x ) {
return 2079.608192860019 + (x * (1272.0927117834513 + (x * (85.09361608493066 + (x * 1.0)))));
}
// END: polyval_q
/* End auto-generated functions. */
/**
* Returns `10` raised to the `x` power.
*
* ## Method
*
* - Range reduction is accomplished by expressing the argument as \\( 10^x = 2^n 10^f \\), with \\( |f| < 0.5 log_{10}(2) \\). The Pade' form
*
* ```tex
* 1 + 2x \frac{P(x^2)}{Q(x^2) - P(x^2)}
* ```
*
* is used to approximate \\( 10^f \\).
*
*
* ## Notes
*
* - Relative error:
*
* | arithmetic | domain | # trials | peak | rms |
* |:----------:|:-----------:|:--------:|:-------:|:-------:|
* | IEEE | -307,+307 | 30000 | 2.2e-16 | 5.5e-17 |
*
* @param x input value
* @return output value
*
* @example
* double out = stdlib_base_exp10( 2.0 );
* // returns 100.0
*/
double stdlib_base_exp10( const double x ) {
double xc;
double px;
double xx;
int32_t n;
if ( stdlib_base_is_nan( x ) ) {
return 0.0 / 0.0; // NaN
}
if ( x > STDLIB_CONSTANT_FLOAT64_MAX_BASE10_EXPONENT ) {
return STDLIB_CONSTANT_FLOAT64_PINF;
}
if ( x < STDLIB_CONSTANT_FLOAT64_MIN_BASE10_EXPONENT ) {
return 0.0;
}
// Express 10^x = 10^g 2^n = 10^g 10^( n log10(2) ) = 10^( g + n log10(2) )
px = stdlib_base_floor( ( LOG210 * x ) + 0.5 );
n = (int32_t)px;
xc = x;
xc -= px * LG102A;
xc -= px * LG102B;
// Rational approximation for exponential of the fractional part: 10^x = 1 + 2x P(x^2)/( Q(x^2) - P(x^2) )
xx = xc * xc;
px = xc * polyval_p( xx );
xc = px / ( polyval_q( xx ) - px );
xc = 1.0 + stdlib_base_ldexp( xc, 1 );
// Multiply by power of 2:
return stdlib_base_ldexp( xc, n );
}