Compute the Fresnel integral C(x).
The Fresnel integral C(x) is defined as
Some sources define C(x) using t2 for the argument of the cosine. To get this function, multiply the computed integral by √(π/2)
and multiply the argument x
by √(2/π)
.
var fresnelc = require( '@stdlib/math/base/special/fresnelc' );
Computes the Fresnel integral C(x).
var v = fresnelc( 0.0 );
// returns ~0.0
v = fresnelc( 1.0 );
// returns ~0.780
v = fresnelc( Infinity );
// returns ~0.5
v = fresnelc( -Infinity );
// returns ~-0.5
v = fresnelc( NaN );
// returns NaN
var linspace = require( '@stdlib/array/base/linspace' );
var fresnelc = require( '@stdlib/math/base/special/fresnelc' );
var x = linspace( 0.0, 10.0, 100 );
var i;
for ( i = 0; i < x.length; i++ ) {
console.log( fresnelc( x[ i ] ) );
}
@stdlib/math/base/special/fresnel
: compute the Fresnel integrals S(x) and C(x).@stdlib/math/base/special/fresnels
: compute the Fresnel integral S(x).