-
-
Notifications
You must be signed in to change notification settings - Fork 810
/
Copy pathexpmulti.js
54 lines (38 loc) · 1.12 KB
/
expmulti.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
'use strict';
// MODULES //
var evalpoly = require( '@stdlib/math/base/tools/evalpoly' ).factory;
var ldexp = require( '@stdlib/math/base/special/ldexp' );
// VARIABLES //
var P = [
1.66666666666666019037e-01, /* 0x3FC55555; 0x5555553E */
-2.77777777770155933842e-03, /* 0xBF66C16C; 0x16BEBD93 */
6.61375632143793436117e-05, /* 0x3F11566A; 0xAF25DE2C */
-1.65339022054652515390e-06,/* 0xBEBBBD41; 0xC5D26BF1 */
4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */
];
// FUNCTIONS //
// Compile a function for evaluating a polynomial based on the above coefficients...
var polyval_P = evalpoly( P );
// MAIN //
/**
* Computes \\(e^{r} 2^k\\) where \\(r = \mathrm{hi} - \mathrm{lo}\\) and \\(|r| \leq \ln(2)/2\\).
*
* @private
* @param {number} hi - upper bound
* @param {number} lo - lower bound
* @param {integer} k - power of 2
* @returns {number} function value
*/
function expmulti( hi, lo, k ) {
var r;
var t;
var c;
var y;
r = hi - lo;
t = r * r;
c = r - t*polyval_P( t );
y = 1.0 - ((lo - (r*c)/(2.0-c)) - hi);
return ldexp( y, k );
} // end FUNCTION expmulti()
// EXPORTS //
module.exports = expmulti;