-
-
Notifications
You must be signed in to change notification settings - Fork 810
/
Copy pathtest.main.js
165 lines (129 loc) · 4.61 KB
/
test.main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/**
* @license Apache-2.0
*
* Copyright (c) 2024 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* eslint-disable max-len */
'use strict';
// MODULES //
var tape = require( 'tape' );
var Float32Array = require( '@stdlib/array/float32' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var evalrationalf = require( './../lib/main.js' );
// TESTS //
tape( 'main export is a function', function test( t ) {
t.ok( true, __filename );
t.strictEqual( typeof evalrationalf, 'function', 'main export is a function' );
t.end();
});
tape( 'if provided two empty coefficient arrays, the function always returns `NaN`', function test( t ) {
var v;
var i;
for ( i = 0; i < 100; i++ ) {
v = evalrationalf( new Float32Array( [] ), new Float32Array( [] ), i );
t.strictEqual( isnan( v ), true, 'returns expected value' );
}
t.end();
});
tape( 'if provided only one coefficient for both arrays, the function always returns the ratio of the two coefficients', function test( t ) {
var v;
var i;
for ( i = 0; i < 100; i++ ) {
v = evalrationalf( new Float32Array( [ 2.0 ] ), new Float32Array( [ 4.0 ] ), i );
t.strictEqual( v, 0.5, 'returns expected value' );
}
t.end();
});
tape( 'if provided coefficient arrays of different lengths, the function always returns `NaN`', function test( t ) {
var v;
var i;
for ( i = 0; i < 100; i++ ) {
v = evalrationalf( new Float32Array( [ 2.0, 1.0, 2.0 ] ), new Float32Array( [ 3.0, 1.0 ] ), i );
t.strictEqual( isnan( v ), true, 'returns expected value' );
v = evalrationalf( new Float32Array( [ 0.5, 2.0 ] ), new Float32Array( [ 2.0, 3.0, 1.0 ] ), i );
t.strictEqual( isnan( v ), true, 'returns expected value' );
}
t.end();
});
tape( 'if the value at which to evaluate a rational function is `0`, the function returns the ratio of the first coefficients', function test( t ) {
var v;
v = evalrationalf( new Float32Array( [ 3.0, 2.0, 1.0 ] ), new Float32Array( [ 0.5, 2.0, 1.0 ] ), 0.0 );
t.strictEqual( v, 6.0, 'returns expected value' );
t.end();
});
tape( 'the function evaluates a rational function', function test( t ) {
var P;
var Q;
var v;
P = new Float32Array( [ 2.0, 3.0, 2.0 ] );
Q = new Float32Array( [ 1.0, 0.0, 0.0 ] );
v = evalrationalf( P, Q, 1.0 );
t.strictEqual( v, 7.0, 'returns expected value' );
P = new Float32Array( [ -6.0, -5.0 ] );
Q = new Float32Array( [ 3.0, 0.5 ] );
v = evalrationalf( P, Q, 6.0 );
t.strictEqual( v, -6.0, 'returns expected value' );
P = new Float32Array( [ -19.0, 7.0, -4.0, 6.0 ] );
Q = new Float32Array( [ 4.0, 5.0, 2.0, 1.0 ] );
v = evalrationalf( P, Q, 3.0 );
t.strictEqual( v, 2.0, 'returns expected value' );
P = new Float32Array( [ 4.0, 2.0, 1.0 ] );
Q = new Float32Array( [ 2.0, 0.0, 0.0 ] );
v = evalrationalf( P, Q, -2.0 );
t.strictEqual( v, 2.0, 'returns expected value' );
t.end();
});
tape( 'the function handles large `x` values', function test( t ) {
var v1;
var v2;
var P;
var Q;
var x;
var i;
// 6x^5 + 5x^4 + 4x^3 + 3x^2 + 2x^1 + 1x^0
P = new Float32Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] );
// 1x^5 + 2x^4 + 3x^3 + 4x^2 + 5x^1 + 6x^0
Q = new Float32Array( [ 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ] );
x = 1.0e100;
for ( i = 0; i < 1000; i++ ) {
x *= 2.0;
v1 = evalrationalf( P, Q, x );
v2 = evalrationalf( P, Q, -x );
t.strictEqual( v1, v2, 'returns expected value' );
}
t.end();
});
tape( 'the function returns analytically incorrect results for certain coefficient and `x` combinations', function test( t ) {
var P;
var Q;
var v;
// Case 1: large negative `x`
// 1x^2 + 1e38x^1 + 0x^0
P = new Float32Array( [ 0.0, 1.0e38, 1.0 ] );
// 0x^2 + 0x^2 + 1x^0
Q = new Float32Array( [ 1.0, 0.0, 0.0 ] );
// (-1e38)^2 + (1e38)(-1e38) = +inf - inf => indeterminate => NaN
v = evalrationalf( P, Q, -1.0e38 );
t.notOk( isnan( v ), 'returns expected value' );
// Case 2: large positive `x`
// 1x^2 - 1e38x^1 + 0x^0
P = new Float32Array( [ 0.0, -1.0e38, 1.0 ] );
// 0x^2 + 0x^2 + 1x^0
Q = new Float32Array( [ 1.0, 0.0, 0.0 ] );
// (1e38)^2 - (1e38)(1e38) = +inf - inf => indeterminate => NaN
v = evalrationalf( P, Q, 1.0e38 );
t.notOk( isnan( v ), 'returns expected value' );
t.end();
});