-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.logpdf.js
141 lines (112 loc) · 3.73 KB
/
test.logpdf.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var tape = require( 'tape' );
var isnan = require( '@stdlib/math-base-assert-is-nan' );
var abs = require( '@stdlib/math-base-special-abs' );
var randu = require( '@stdlib/random-base-randu' );
var PINF = require( '@stdlib/constants-float64-pinf' );
var NINF = require( '@stdlib/constants-float64-ninf' );
var EPS = require( '@stdlib/constants-float64-eps' );
var logpdf = require( './../lib' );
// FIXTURES //
var decimalDecimal = require( './fixtures/julia/decimal_decimal.json' );
// TESTS //
tape( 'main export is a function', function test( t ) {
t.ok( true, __filename );
t.strictEqual( typeof logpdf, 'function', 'main export is a function' );
t.end();
});
tape( 'if provided `NaN` for any parameter, the function returns `NaN`', function test( t ) {
var y = logpdf( NaN, 1.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = logpdf( 0.0, NaN );
t.equal( isnan( y ), true, 'returns NaN' );
t.end();
});
tape( 'if provided `Infinity` for `x` and a finite `k`, the function returns `-Infinity`', function test( t ) {
var y = logpdf( PINF, 1.0 );
t.equal( y, NINF, 'returns -Infinity' );
t.end();
});
tape( 'if provided `-Infinity` for `x` and a finite `k`, the function returns `-Infinity`', function test( t ) {
var y = logpdf( NINF, 1.0 );
t.equal( y, NINF, 'returns -Infinity' );
t.end();
});
tape( 'if provided a negative `k`, the function always returns `NaN`', function test( t ) {
var y;
y = logpdf( 2.0, -1.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = logpdf( 0.0, -1.0 );
t.equal( isnan( y ), true, 'returns NaN' );
y = logpdf( 2.0, NINF );
t.equal( isnan( y ), true, 'returns NaN' );
t.end();
});
tape( 'if `k` equals `0`, the function evaluates a degenerate distribution centered at `0`', function test( t ) {
var y;
y = logpdf( 0.0, 0.0 );
t.equal( y, PINF, 'returns +Infinity for x equal to 0' );
y = logpdf( 1.0, 0.0 );
t.equal( y, NINF, 'returns -Infinity' );
y = logpdf( -1.5, 0.0 );
t.equal( y, NINF, 'returns -Infinity' );
y = logpdf( PINF, 0.0 );
t.equal( y, NINF, 'returns -Infinity' );
y = logpdf( NINF, 0.0 );
t.equal( y, NINF, 'returns -Infinity' );
y = logpdf( NaN, 0.0 );
t.equal( isnan( y ), true, 'returns NaN' );
t.end();
});
tape( 'the function returns `-Infinity` for all `x < 0`', function test( t ) {
var x;
var y;
var i;
for ( i = 0; i < 100; i++ ) {
x = -( randu()*100.0 ) - EPS;
y = logpdf( x, 1.0 );
t.equal( y, NINF, 'returns -Infinity for x='+x );
}
t.end();
});
tape( 'the function evaluates the logpdf for `x` given degrees of freedom `k`', function test( t ) {
var expected;
var delta;
var tol;
var x;
var k;
var y;
var i;
expected = decimalDecimal.expected;
x = decimalDecimal.x;
k = decimalDecimal.k;
for ( i = 0; i < x.length; i++ ) {
y = logpdf( x[i], k[i] );
if ( y === expected[i] ) {
t.equal( y, expected[i], 'x: '+x[i]+'. k:'+k[i]+', y: '+y+', expected: '+expected[i] );
} else {
delta = abs( y - expected[ i ] );
tol = 10.0 * EPS * abs( expected[ i ] );
t.ok( delta <= tol, 'within tolerance. x: '+x[ i ]+'. k: '+k[i]+'. y: '+y+'. E: '+expected[ i ]+'. Δ: '+delta+'. tol: '+tol+'.' );
}
}
t.end();
});