@@ -124,7 +124,7 @@ def group_median_float64(
124
124
ndarray[intp_t] indexer
125
125
float64_t* ptr
126
126
127
- assert min_count == -1, "'min_count' only used in add and prod"
127
+ assert min_count == -1, "'min_count' only used in sum and prod"
128
128
129
129
ngroups = len (counts)
130
130
N , K = (< object > values).shape
@@ -502,7 +502,7 @@ def group_any_all(
502
502
503
503
504
504
# ----------------------------------------------------------------------
505
- # group_add , group_prod, group_var, group_mean, group_ohlc
505
+ # group_sum , group_prod, group_var, group_mean, group_ohlc
506
506
# ----------------------------------------------------------------------
507
507
508
508
ctypedef fused mean_t:
@@ -511,17 +511,17 @@ ctypedef fused mean_t:
511
511
complex64_t
512
512
complex128_t
513
513
514
- ctypedef fused add_t :
514
+ ctypedef fused sum_t :
515
515
mean_t
516
516
object
517
517
518
518
519
519
@ cython.wraparound (False )
520
520
@ cython.boundscheck (False )
521
- def group_add (
522
- add_t [:, ::1] out ,
521
+ def group_sum (
522
+ sum_t [:, ::1] out ,
523
523
int64_t[::1] counts ,
524
- ndarray[add_t , ndim = 2 ] values,
524
+ ndarray[sum_t , ndim = 2 ] values,
525
525
const intp_t[::1] labels ,
526
526
Py_ssize_t min_count = 0 ,
527
527
bint is_datetimelike = False ,
@@ -531,8 +531,8 @@ def group_add(
531
531
"""
532
532
cdef:
533
533
Py_ssize_t i , j , N , K , lab , ncounts = len (counts)
534
- add_t val , t , y
535
- add_t [:, ::1] sumx , compensation
534
+ sum_t val , t , y
535
+ sum_t [:, ::1] sumx , compensation
536
536
int64_t[:, ::1] nobs
537
537
Py_ssize_t len_values = len (values), len_labels = len (labels)
538
538
@@ -546,7 +546,7 @@ def group_add(
546
546
547
547
N , K = (< object > values).shape
548
548
549
- if add_t is object:
549
+ if sum_t is object:
550
550
# NB: this does not use 'compensation' like the non-object track does.
551
551
for i in range(N ):
552
552
lab = labels[i]
@@ -588,10 +588,10 @@ def group_add(
588
588
589
589
# not nan
590
590
# With dt64/td64 values, values have been cast to float64
591
- # instead if int64 for group_add , but the logic
591
+ # instead if int64 for group_sum , but the logic
592
592
# is otherwise the same as in _treat_as_na
593
593
if val == val and not (
594
- add_t is float64_t
594
+ sum_t is float64_t
595
595
and is_datetimelike
596
596
and val == < float64_t> NPY_NAT
597
597
):
@@ -677,7 +677,7 @@ def group_var(
677
677
int64_t[:, ::1] nobs
678
678
Py_ssize_t len_values = len (values), len_labels = len (labels)
679
679
680
- assert min_count == -1, "'min_count' only used in add and prod"
680
+ assert min_count == -1, "'min_count' only used in sum and prod"
681
681
682
682
if len_values != len_labels:
683
683
raise ValueError("len(index ) != len(labels )")
@@ -745,7 +745,7 @@ def group_mean(
745
745
Array containing unique label for each group , with its
746
746
ordering matching up to the corresponding record in `values`.
747
747
min_count : Py_ssize_t
748
- Only used in add and prod. Always -1.
748
+ Only used in sum and prod. Always -1.
749
749
is_datetimelike : bool
750
750
True if `values` contains datetime-like entries.
751
751
mask : ndarray[bool , ndim = 2 ], optional
@@ -766,7 +766,7 @@ def group_mean(
766
766
int64_t[:, ::1] nobs
767
767
Py_ssize_t len_values = len (values), len_labels = len (labels)
768
768
769
- assert min_count == -1, "'min_count' only used in add and prod"
769
+ assert min_count == -1, "'min_count' only used in sum and prod"
770
770
771
771
if len_values != len_labels:
772
772
raise ValueError("len(index ) != len(labels )")
@@ -821,7 +821,7 @@ def group_ohlc(
821
821
Py_ssize_t i , j , N , K , lab
822
822
floating val
823
823
824
- assert min_count == -1, "'min_count' only used in add and prod"
824
+ assert min_count == -1, "'min_count' only used in sum and prod"
825
825
826
826
if len(labels ) == 0:
827
827
return
0 commit comments