forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperiod.py
141 lines (109 loc) · 2.91 KB
/
period.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
Period benchmarks that rely only on tslibs. See benchmarks.period for
Period benchmarks that rely on other parts of pandas.
"""
import numpy as np
from pandas._libs.tslibs.period import (
Period,
periodarr_to_dt64arr,
)
from pandas.tseries.frequencies import to_offset
from .tslib import (
_sizes,
_tzs,
tzlocal_obj,
)
try:
from pandas._libs.tslibs.vectorized import dt64arr_to_periodarr
except ImportError:
from pandas._libs.tslibs.period import dt64arr_to_periodarr
class PeriodProperties:
params = (
["M", "min"],
[
"year",
"month",
"day",
"hour",
"minute",
"second",
"is_leap_year",
"quarter",
"qyear",
"week",
"daysinmonth",
"dayofweek",
"dayofyear",
"start_time",
"end_time",
],
)
param_names = ["freq", "attr"]
def setup(self, freq, attr):
self.per = Period("2012-06-01", freq=freq)
def time_property(self, freq, attr):
getattr(self.per, attr)
class PeriodUnaryMethods:
params = ["M", "min"]
param_names = ["freq"]
def setup(self, freq):
self.per = Period("2012-06-01", freq=freq)
def time_to_timestamp(self, freq):
self.per.to_timestamp()
def time_now(self, freq):
self.per.now(freq)
def time_asfreq(self, freq):
self.per.asfreq("A")
class PeriodConstructor:
params = [["D"], [True, False]]
param_names = ["freq", "is_offset"]
def setup(self, freq, is_offset):
if is_offset:
self.freq = to_offset(freq)
else:
self.freq = freq
def time_period_constructor(self, freq, is_offset):
Period("2012-06-01", freq=freq)
_freq_ints = [
1000,
1011, # Annual - November End
2000,
2011, # Quarterly - November End
3000,
4000,
4006, # Weekly - Saturday End
5000,
6000,
7000,
8000,
9000,
10000,
11000,
12000,
]
class TimePeriodArrToDT64Arr:
params = [
_sizes,
_freq_ints,
]
param_names = ["size", "freq"]
def setup(self, size, freq):
arr = np.arange(10, dtype="i8").repeat(size // 10)
self.i8values = arr
def time_periodarray_to_dt64arr(self, size, freq):
periodarr_to_dt64arr(self.i8values, freq)
class TimeDT64ArrToPeriodArr:
params = [
_sizes,
_freq_ints,
_tzs,
]
param_names = ["size", "freq", "tz"]
def setup(self, size, freq, tz):
if size == 10**6 and tz is tzlocal_obj:
# tzlocal is cumbersomely slow, so skip to keep runtime in check
raise NotImplementedError
arr = np.arange(10, dtype="i8").repeat(size // 10)
self.i8values = arr
def time_dt64arr_to_periodarr(self, size, freq, tz):
dt64arr_to_periodarr(self.i8values, freq, tz)