forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstrings.py
304 lines (205 loc) · 7.6 KB
/
strings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import warnings
import numpy as np
from pandas import (
NA,
Categorical,
DataFrame,
Series,
)
from pandas.arrays import StringArray
from .pandas_vb_common import tm
class Dtypes:
params = ["str", "string[python]", "string[pyarrow]"]
param_names = ["dtype"]
def setup(self, dtype):
try:
self.s = Series(tm.makeStringIndex(10**5), dtype=dtype)
except ImportError:
raise NotImplementedError
class Construction:
params = ["str", "string"]
param_names = ["dtype"]
def setup(self, dtype):
self.series_arr = tm.rands_array(nchars=10, size=10**5)
self.frame_arr = self.series_arr.reshape((50_000, 2)).copy()
# GH37371. Testing construction of string series/frames from ExtensionArrays
self.series_cat_arr = Categorical(self.series_arr)
self.frame_cat_arr = Categorical(self.frame_arr)
def time_series_construction(self, dtype):
Series(self.series_arr, dtype=dtype)
def peakmem_series_construction(self, dtype):
Series(self.series_arr, dtype=dtype)
def time_frame_construction(self, dtype):
DataFrame(self.frame_arr, dtype=dtype)
def peakmem_frame_construction(self, dtype):
DataFrame(self.frame_arr, dtype=dtype)
def time_cat_series_construction(self, dtype):
Series(self.series_cat_arr, dtype=dtype)
def peakmem_cat_series_construction(self, dtype):
Series(self.series_cat_arr, dtype=dtype)
def time_cat_frame_construction(self, dtype):
DataFrame(self.frame_cat_arr, dtype=dtype)
def peakmem_cat_frame_construction(self, dtype):
DataFrame(self.frame_cat_arr, dtype=dtype)
class Methods(Dtypes):
def time_center(self, dtype):
self.s.str.center(100)
def time_count(self, dtype):
self.s.str.count("A")
def time_endswith(self, dtype):
self.s.str.endswith("A")
def time_extract(self, dtype):
with warnings.catch_warnings(record=True):
self.s.str.extract("(\\w*)A(\\w*)")
def time_findall(self, dtype):
self.s.str.findall("[A-Z]+")
def time_find(self, dtype):
self.s.str.find("[A-Z]+")
def time_rfind(self, dtype):
self.s.str.rfind("[A-Z]+")
def time_fullmatch(self, dtype):
self.s.str.fullmatch("A")
def time_get(self, dtype):
self.s.str.get(0)
def time_len(self, dtype):
self.s.str.len()
def time_join(self, dtype):
self.s.str.join(" ")
def time_match(self, dtype):
self.s.str.match("A")
def time_normalize(self, dtype):
self.s.str.normalize("NFC")
def time_pad(self, dtype):
self.s.str.pad(100, side="both")
def time_partition(self, dtype):
self.s.str.partition("A")
def time_rpartition(self, dtype):
self.s.str.rpartition("A")
def time_replace(self, dtype):
self.s.str.replace("A", "\x01\x01")
def time_translate(self, dtype):
self.s.str.translate({"A": "\x01\x01"})
def time_slice(self, dtype):
self.s.str.slice(5, 15, 2)
def time_startswith(self, dtype):
self.s.str.startswith("A")
def time_strip(self, dtype):
self.s.str.strip("A")
def time_rstrip(self, dtype):
self.s.str.rstrip("A")
def time_lstrip(self, dtype):
self.s.str.lstrip("A")
def time_title(self, dtype):
self.s.str.title()
def time_upper(self, dtype):
self.s.str.upper()
def time_lower(self, dtype):
self.s.str.lower()
def time_wrap(self, dtype):
self.s.str.wrap(10)
def time_zfill(self, dtype):
self.s.str.zfill(10)
def time_isalnum(self, dtype):
self.s.str.isalnum()
def time_isalpha(self, dtype):
self.s.str.isalpha()
def time_isdecimal(self, dtype):
self.s.str.isdecimal()
def time_isdigit(self, dtype):
self.s.str.isdigit()
def time_islower(self, dtype):
self.s.str.islower()
def time_isnumeric(self, dtype):
self.s.str.isnumeric()
def time_isspace(self, dtype):
self.s.str.isspace()
def time_istitle(self, dtype):
self.s.str.istitle()
def time_isupper(self, dtype):
self.s.str.isupper()
class Repeat:
params = ["int", "array"]
param_names = ["repeats"]
def setup(self, repeats):
N = 10**5
self.s = Series(tm.makeStringIndex(N))
repeat = {"int": 1, "array": np.random.randint(1, 3, N)}
self.values = repeat[repeats]
def time_repeat(self, repeats):
self.s.str.repeat(self.values)
class Cat:
params = ([0, 3], [None, ","], [None, "-"], [0.0, 0.001, 0.15])
param_names = ["other_cols", "sep", "na_rep", "na_frac"]
def setup(self, other_cols, sep, na_rep, na_frac):
N = 10**5
mask_gen = lambda: np.random.choice([True, False], N, p=[1 - na_frac, na_frac])
self.s = Series(tm.makeStringIndex(N)).where(mask_gen())
if other_cols == 0:
# str.cat self-concatenates only for others=None
self.others = None
else:
self.others = DataFrame(
{i: tm.makeStringIndex(N).where(mask_gen()) for i in range(other_cols)}
)
def time_cat(self, other_cols, sep, na_rep, na_frac):
# before the concatenation (one caller + other_cols columns), the total
# expected fraction of rows containing any NaN is:
# reduce(lambda t, _: t + (1 - t) * na_frac, range(other_cols + 1), 0)
# for other_cols=3 and na_frac=0.15, this works out to ~48%
self.s.str.cat(others=self.others, sep=sep, na_rep=na_rep)
class Contains(Dtypes):
params = (Dtypes.params, [True, False])
param_names = ["dtype", "regex"]
def setup(self, dtype, regex):
super().setup(dtype)
def time_contains(self, dtype, regex):
self.s.str.contains("A", regex=regex)
class Split(Dtypes):
params = (Dtypes.params, [True, False])
param_names = ["dtype", "expand"]
def setup(self, dtype, expand):
super().setup(dtype)
self.s = self.s.str.join("--")
def time_split(self, dtype, expand):
self.s.str.split("--", expand=expand)
def time_rsplit(self, dtype, expand):
self.s.str.rsplit("--", expand=expand)
class Extract(Dtypes):
params = (Dtypes.params, [True, False])
param_names = ["dtype", "expand"]
def setup(self, dtype, expand):
super().setup(dtype)
def time_extract_single_group(self, dtype, expand):
with warnings.catch_warnings(record=True):
self.s.str.extract("(\\w*)A", expand=expand)
class Dummies(Dtypes):
def setup(self, dtype):
super().setup(dtype)
self.s = self.s.str.join("|")
def time_get_dummies(self, dtype):
self.s.str.get_dummies("|")
class Encode:
def setup(self):
self.ser = Series(tm.makeStringIndex())
def time_encode_decode(self):
self.ser.str.encode("utf-8").str.decode("utf-8")
class Slice:
def setup(self):
self.s = Series(["abcdefg", np.nan] * 500000)
def time_vector_slice(self):
# GH 2602
self.s.str[:5]
class Iter(Dtypes):
def time_iter(self, dtype):
for i in self.s:
pass
class StringArrayConstruction:
def setup(self):
self.series_arr = tm.rands_array(nchars=10, size=10**5)
self.series_arr_nan = np.concatenate([self.series_arr, np.array([NA] * 1000)])
def time_string_array_construction(self):
StringArray(self.series_arr)
def time_string_array_with_nan_construction(self):
StringArray(self.series_arr_nan)
def peakmem_stringarray_construction(self):
StringArray(self.series_arr)