forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstat_ops.py
144 lines (98 loc) · 3.88 KB
/
stat_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import pandas as pd
ops = ["mean", "sum", "median", "std", "skew", "kurt", "mad", "prod", "sem", "var"]
class FrameOps:
params = [ops, ["float", "int", "Int64"], [0, 1]]
param_names = ["op", "dtype", "axis"]
def setup(self, op, dtype, axis):
if op == "mad" and dtype == "Int64":
# GH-33036, GH#33600
raise NotImplementedError
values = np.random.randn(100000, 4)
if dtype == "Int64":
values = values.astype(int)
df = pd.DataFrame(values).astype(dtype)
self.df_func = getattr(df, op)
def time_op(self, op, dtype, axis):
self.df_func(axis=axis)
class FrameMultiIndexOps:
params = ([0, 1, [0, 1]], ops)
param_names = ["level", "op"]
def setup(self, level, op):
levels = [np.arange(10), np.arange(100), np.arange(100)]
codes = [
np.arange(10).repeat(10000),
np.tile(np.arange(100).repeat(100), 10),
np.tile(np.tile(np.arange(100), 100), 10),
]
index = pd.MultiIndex(levels=levels, codes=codes)
df = pd.DataFrame(np.random.randn(len(index), 4), index=index)
self.df_func = getattr(df, op)
def time_op(self, level, op):
self.df_func(level=level)
class SeriesOps:
params = [ops, ["float", "int"]]
param_names = ["op", "dtype"]
def setup(self, op, dtype):
s = pd.Series(np.random.randn(100000)).astype(dtype)
self.s_func = getattr(s, op)
def time_op(self, op, dtype):
self.s_func()
class SeriesMultiIndexOps:
params = ([0, 1, [0, 1]], ops)
param_names = ["level", "op"]
def setup(self, level, op):
levels = [np.arange(10), np.arange(100), np.arange(100)]
codes = [
np.arange(10).repeat(10000),
np.tile(np.arange(100).repeat(100), 10),
np.tile(np.tile(np.arange(100), 100), 10),
]
index = pd.MultiIndex(levels=levels, codes=codes)
s = pd.Series(np.random.randn(len(index)), index=index)
self.s_func = getattr(s, op)
def time_op(self, level, op):
self.s_func(level=level)
class Rank:
params = [["DataFrame", "Series"], [True, False]]
param_names = ["constructor", "pct"]
def setup(self, constructor, pct):
values = np.random.randn(10**5)
self.data = getattr(pd, constructor)(values)
def time_rank(self, constructor, pct):
self.data.rank(pct=pct)
def time_average_old(self, constructor, pct):
self.data.rank(pct=pct) / len(self.data)
class Correlation:
params = [["spearman", "kendall", "pearson"]]
param_names = ["method"]
def setup(self, method):
self.df = pd.DataFrame(np.random.randn(500, 15))
self.df2 = pd.DataFrame(np.random.randn(500, 15))
self.df_wide = pd.DataFrame(np.random.randn(500, 100))
self.df_wide_nans = self.df_wide.where(np.random.random((500, 100)) < 0.9)
self.s = pd.Series(np.random.randn(500))
self.s2 = pd.Series(np.random.randn(500))
def time_corr(self, method):
self.df.corr(method=method)
def time_corr_wide(self, method):
self.df_wide.corr(method=method)
def time_corr_wide_nans(self, method):
self.df_wide_nans.corr(method=method)
def peakmem_corr_wide(self, method):
self.df_wide.corr(method=method)
def time_corr_series(self, method):
self.s.corr(self.s2, method=method)
def time_corrwith_cols(self, method):
self.df.corrwith(self.df2, method=method)
def time_corrwith_rows(self, method):
self.df.corrwith(self.df2, axis=1, method=method)
class Covariance:
params = []
param_names = []
def setup(self):
self.s = pd.Series(np.random.randn(100000))
self.s2 = pd.Series(np.random.randn(100000))
def time_cov_series(self):
self.s.cov(self.s2)
from .pandas_vb_common import setup # noqa: F401 isort:skip