forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsparse.py
233 lines (168 loc) · 6.66 KB
/
sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import numpy as np
import scipy.sparse
import pandas as pd
from pandas import (
MultiIndex,
Series,
date_range,
)
from pandas.arrays import SparseArray
def make_array(size, dense_proportion, fill_value, dtype):
dense_size = int(size * dense_proportion)
arr = np.full(size, fill_value, dtype)
indexer = np.random.choice(np.arange(size), dense_size, replace=False)
arr[indexer] = np.random.choice(np.arange(100, dtype=dtype), dense_size)
return arr
class SparseSeriesToFrame:
def setup(self):
K = 50
N = 50001
rng = date_range("1/1/2000", periods=N, freq="T")
self.series = {}
for i in range(1, K):
data = np.random.randn(N)[:-i]
idx = rng[:-i]
data[100:] = np.nan
self.series[i] = Series(SparseArray(data), index=idx)
def time_series_to_frame(self):
pd.DataFrame(self.series)
class SparseArrayConstructor:
params = ([0.1, 0.01], [0, np.nan], [np.int64, np.float64, object])
param_names = ["dense_proportion", "fill_value", "dtype"]
def setup(self, dense_proportion, fill_value, dtype):
N = 10**6
self.array = make_array(N, dense_proportion, fill_value, dtype)
def time_sparse_array(self, dense_proportion, fill_value, dtype):
SparseArray(self.array, fill_value=fill_value, dtype=dtype)
class SparseDataFrameConstructor:
def setup(self):
N = 1000
self.sparse = scipy.sparse.rand(N, N, 0.005)
def time_from_scipy(self):
pd.DataFrame.sparse.from_spmatrix(self.sparse)
class FromCoo:
def setup(self):
self.matrix = scipy.sparse.coo_matrix(
([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(100, 100)
)
def time_sparse_series_from_coo(self):
Series.sparse.from_coo(self.matrix)
class ToCoo:
params = [True, False]
param_names = ["sort_labels"]
def setup(self, sort_labels):
s = Series([np.nan] * 10000)
s[0] = 3.0
s[100] = -1.0
s[999] = 12.1
s_mult_lvl = s.set_axis(MultiIndex.from_product([range(10)] * 4))
self.ss_mult_lvl = s_mult_lvl.astype("Sparse")
s_two_lvl = s.set_axis(MultiIndex.from_product([range(100)] * 2))
self.ss_two_lvl = s_two_lvl.astype("Sparse")
def time_sparse_series_to_coo(self, sort_labels):
self.ss_mult_lvl.sparse.to_coo(
row_levels=[0, 1], column_levels=[2, 3], sort_labels=sort_labels
)
def time_sparse_series_to_coo_single_level(self, sort_labels):
self.ss_two_lvl.sparse.to_coo(sort_labels=sort_labels)
class ToCooFrame:
def setup(self):
N = 10000
k = 10
arr = np.zeros((N, k), dtype=float)
arr[0, 0] = 3.0
arr[12, 7] = -1.0
arr[0, 9] = 11.2
self.df = pd.DataFrame(arr, dtype=pd.SparseDtype("float", fill_value=0.0))
def time_to_coo(self):
self.df.sparse.to_coo()
class Arithmetic:
params = ([0.1, 0.01], [0, np.nan])
param_names = ["dense_proportion", "fill_value"]
def setup(self, dense_proportion, fill_value):
N = 10**6
arr1 = make_array(N, dense_proportion, fill_value, np.int64)
self.array1 = SparseArray(arr1, fill_value=fill_value)
arr2 = make_array(N, dense_proportion, fill_value, np.int64)
self.array2 = SparseArray(arr2, fill_value=fill_value)
def time_make_union(self, dense_proportion, fill_value):
self.array1.sp_index.make_union(self.array2.sp_index)
def time_intersect(self, dense_proportion, fill_value):
self.array1.sp_index.intersect(self.array2.sp_index)
def time_add(self, dense_proportion, fill_value):
self.array1 + self.array2
def time_divide(self, dense_proportion, fill_value):
self.array1 / self.array2
class ArithmeticBlock:
params = [np.nan, 0]
param_names = ["fill_value"]
def setup(self, fill_value):
N = 10**6
self.arr1 = self.make_block_array(
length=N, num_blocks=1000, block_size=10, fill_value=fill_value
)
self.arr2 = self.make_block_array(
length=N, num_blocks=1000, block_size=10, fill_value=fill_value
)
def make_block_array(self, length, num_blocks, block_size, fill_value):
arr = np.full(length, fill_value)
indices = np.random.choice(
np.arange(0, length, block_size), num_blocks, replace=False
)
for ind in indices:
arr[ind : ind + block_size] = np.random.randint(0, 100, block_size)
return SparseArray(arr, fill_value=fill_value)
def time_make_union(self, fill_value):
self.arr1.sp_index.make_union(self.arr2.sp_index)
def time_intersect(self, fill_value):
self.arr2.sp_index.intersect(self.arr2.sp_index)
def time_addition(self, fill_value):
self.arr1 + self.arr2
def time_division(self, fill_value):
self.arr1 / self.arr2
class MinMax:
params = (["min", "max"], [0.0, np.nan])
param_names = ["func", "fill_value"]
def setup(self, func, fill_value):
N = 1_000_000
arr = make_array(N, 1e-5, fill_value, np.float64)
self.sp_arr = SparseArray(arr, fill_value=fill_value)
def time_min_max(self, func, fill_value):
getattr(self.sp_arr, func)()
class Take:
params = ([np.array([0]), np.arange(100_000), np.full(100_000, -1)], [True, False])
param_names = ["indices", "allow_fill"]
def setup(self, indices, allow_fill):
N = 1_000_000
fill_value = 0.0
arr = make_array(N, 1e-5, fill_value, np.float64)
self.sp_arr = SparseArray(arr, fill_value=fill_value)
def time_take(self, indices, allow_fill):
self.sp_arr.take(indices, allow_fill=allow_fill)
class GetItem:
def setup(self):
N = 1_000_000
d = 1e-5
arr = make_array(N, d, np.nan, np.float64)
self.sp_arr = SparseArray(arr)
def time_integer_indexing(self):
self.sp_arr[78]
def time_slice(self):
self.sp_arr[1:]
class GetItemMask:
params = [True, False, np.nan]
param_names = ["fill_value"]
def setup(self, fill_value):
N = 1_000_000
d = 1e-5
arr = make_array(N, d, np.nan, np.float64)
self.sp_arr = SparseArray(arr)
b_arr = np.full(shape=N, fill_value=fill_value, dtype=np.bool8)
fv_inds = np.unique(
np.random.randint(low=0, high=N - 1, size=int(N * d), dtype=np.int32)
)
b_arr[fv_inds] = True if pd.isna(fill_value) else not fill_value
self.sp_b_arr = SparseArray(b_arr, dtype=np.bool8, fill_value=fill_value)
def time_mask(self, fill_value):
self.sp_arr[self.sp_b_arr]
from .pandas_vb_common import setup # noqa: F401 isort:skip