forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiindex_object.py
258 lines (198 loc) · 7.17 KB
/
multiindex_object.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import string
import numpy as np
from pandas import (
DataFrame,
MultiIndex,
RangeIndex,
date_range,
)
from .pandas_vb_common import tm
class GetLoc:
def setup(self):
self.mi_large = MultiIndex.from_product(
[np.arange(1000), np.arange(20), list(string.ascii_letters)],
names=["one", "two", "three"],
)
self.mi_med = MultiIndex.from_product(
[np.arange(1000), np.arange(10), list("A")], names=["one", "two", "three"]
)
self.mi_small = MultiIndex.from_product(
[np.arange(100), list("A"), list("A")], names=["one", "two", "three"]
)
def time_large_get_loc(self):
self.mi_large.get_loc((999, 19, "Z"))
def time_large_get_loc_warm(self):
for _ in range(1000):
self.mi_large.get_loc((999, 19, "Z"))
def time_med_get_loc(self):
self.mi_med.get_loc((999, 9, "A"))
def time_med_get_loc_warm(self):
for _ in range(1000):
self.mi_med.get_loc((999, 9, "A"))
def time_string_get_loc(self):
self.mi_small.get_loc((99, "A", "A"))
def time_small_get_loc_warm(self):
for _ in range(1000):
self.mi_small.get_loc((99, "A", "A"))
class GetLocs:
def setup(self):
self.mi_large = MultiIndex.from_product(
[np.arange(1000), np.arange(20), list(string.ascii_letters)],
names=["one", "two", "three"],
)
self.mi_med = MultiIndex.from_product(
[np.arange(1000), np.arange(10), list("A")], names=["one", "two", "three"]
)
self.mi_small = MultiIndex.from_product(
[np.arange(100), list("A"), list("A")], names=["one", "two", "three"]
)
def time_large_get_locs(self):
self.mi_large.get_locs([999, 19, "Z"])
def time_med_get_locs(self):
self.mi_med.get_locs([999, 9, "A"])
def time_small_get_locs(self):
self.mi_small.get_locs([99, "A", "A"])
class Duplicates:
def setup(self):
size = 65536
arrays = [np.random.randint(0, 8192, size), np.random.randint(0, 1024, size)]
mask = np.random.rand(size) < 0.1
self.mi_unused_levels = MultiIndex.from_arrays(arrays)
self.mi_unused_levels = self.mi_unused_levels[mask]
def time_remove_unused_levels(self):
self.mi_unused_levels.remove_unused_levels()
class Integer:
def setup(self):
self.mi_int = MultiIndex.from_product(
[np.arange(1000), np.arange(1000)], names=["one", "two"]
)
self.obj_index = np.array(
[
(0, 10),
(0, 11),
(0, 12),
(0, 13),
(0, 14),
(0, 15),
(0, 16),
(0, 17),
(0, 18),
(0, 19),
],
dtype=object,
)
self.other_mi_many_mismatches = MultiIndex.from_tuples(
[
(-7, 41),
(-2, 3),
(-0.7, 5),
(0, 0),
(0, 1.5),
(0, 340),
(0, 1001),
(1, -4),
(1, 20),
(1, 1040),
(432, -5),
(432, 17),
(439, 165.5),
(998, -4),
(998, 24065),
(999, 865.2),
(999, 1000),
(1045, -843),
]
)
def time_get_indexer(self):
self.mi_int.get_indexer(self.obj_index)
def time_get_indexer_and_backfill(self):
self.mi_int.get_indexer(self.other_mi_many_mismatches, method="backfill")
def time_get_indexer_and_pad(self):
self.mi_int.get_indexer(self.other_mi_many_mismatches, method="pad")
def time_is_monotonic(self):
self.mi_int.is_monotonic_increasing
class Duplicated:
def setup(self):
n, k = 200, 5000
levels = [np.arange(n), tm.makeStringIndex(n).values, 1000 + np.arange(n)]
codes = [np.random.choice(n, (k * n)) for lev in levels]
self.mi = MultiIndex(levels=levels, codes=codes)
def time_duplicated(self):
self.mi.duplicated()
class Sortlevel:
def setup(self):
n = 1182720
low, high = -4096, 4096
arrs = [
np.repeat(np.random.randint(low, high, (n // k)), k)
for k in [11, 7, 5, 3, 1]
]
self.mi_int = MultiIndex.from_arrays(arrs)[np.random.permutation(n)]
a = np.repeat(np.arange(100), 1000)
b = np.tile(np.arange(1000), 100)
self.mi = MultiIndex.from_arrays([a, b])
self.mi = self.mi.take(np.random.permutation(np.arange(100000)))
def time_sortlevel_int64(self):
self.mi_int.sortlevel()
def time_sortlevel_zero(self):
self.mi.sortlevel(0)
def time_sortlevel_one(self):
self.mi.sortlevel(1)
class Values:
def setup_cache(self):
level1 = range(1000)
level2 = date_range(start="1/1/2012", periods=100)
mi = MultiIndex.from_product([level1, level2])
return mi
def time_datetime_level_values_copy(self, mi):
mi.copy().values
def time_datetime_level_values_sliced(self, mi):
mi[:10].values
class CategoricalLevel:
def setup(self):
self.df = DataFrame(
{
"a": np.arange(1_000_000, dtype=np.int32),
"b": np.arange(1_000_000, dtype=np.int64),
"c": np.arange(1_000_000, dtype=float),
}
).astype({"a": "category", "b": "category"})
def time_categorical_level(self):
self.df.set_index(["a", "b"])
class Equals:
def setup(self):
idx_large_fast = RangeIndex(100000)
idx_small_slow = date_range(start="1/1/2012", periods=1)
self.mi_large_slow = MultiIndex.from_product([idx_large_fast, idx_small_slow])
self.idx_non_object = RangeIndex(1)
def time_equals_non_object_index(self):
self.mi_large_slow.equals(self.idx_non_object)
class SetOperations:
params = [
("monotonic", "non_monotonic"),
("datetime", "int", "string"),
("intersection", "union", "symmetric_difference"),
]
param_names = ["index_structure", "dtype", "method"]
def setup(self, index_structure, dtype, method):
N = 10**5
level1 = range(1000)
level2 = date_range(start="1/1/2000", periods=N // 1000)
dates_left = MultiIndex.from_product([level1, level2])
level2 = range(N // 1000)
int_left = MultiIndex.from_product([level1, level2])
level2 = tm.makeStringIndex(N // 1000).values
str_left = MultiIndex.from_product([level1, level2])
data = {
"datetime": dates_left,
"int": int_left,
"string": str_left,
}
if index_structure == "non_monotonic":
data = {k: mi[::-1] for k, mi in data.items()}
data = {k: {"left": mi, "right": mi[:-1]} for k, mi in data.items()}
self.left = data[dtype]["left"]
self.right = data[dtype]["right"]
def time_operation(self, index_structure, dtype, method):
getattr(self.left, method)(self.right)
from .pandas_vb_common import setup # noqa: F401 isort:skip