forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindexing.py
497 lines (367 loc) · 14.5 KB
/
indexing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
"""
These benchmarks are for Series and DataFrame indexing methods. For the
lower-level methods directly on Index and subclasses, see index_object.py,
indexing_engine.py, and index_cached.py
"""
import itertools
import string
import warnings
import numpy as np
from pandas import (
CategoricalIndex,
DataFrame,
Float64Index,
Int64Index,
IntervalIndex,
MultiIndex,
Series,
UInt64Index,
concat,
date_range,
option_context,
period_range,
)
from .pandas_vb_common import tm
class NumericSeriesIndexing:
params = [
(Int64Index, UInt64Index, Float64Index),
("unique_monotonic_inc", "nonunique_monotonic_inc"),
]
param_names = ["index_dtype", "index_structure"]
def setup(self, index, index_structure):
N = 10**6
indices = {
"unique_monotonic_inc": index(range(N)),
"nonunique_monotonic_inc": index(
list(range(55)) + [54] + list(range(55, N - 1))
),
}
self.data = Series(np.random.rand(N), index=indices[index_structure])
self.array = np.arange(10000)
self.array_list = self.array.tolist()
def time_getitem_scalar(self, index, index_structure):
self.data[800000]
def time_getitem_slice(self, index, index_structure):
self.data[:800000]
def time_getitem_list_like(self, index, index_structure):
self.data[[800000]]
def time_getitem_array(self, index, index_structure):
self.data[self.array]
def time_getitem_lists(self, index, index_structure):
self.data[self.array_list]
def time_iloc_array(self, index, index_structure):
self.data.iloc[self.array]
def time_iloc_list_like(self, index, index_structure):
self.data.iloc[[800000]]
def time_iloc_scalar(self, index, index_structure):
self.data.iloc[800000]
def time_iloc_slice(self, index, index_structure):
self.data.iloc[:800000]
def time_loc_array(self, index, index_structure):
self.data.loc[self.array]
def time_loc_list_like(self, index, index_structure):
self.data.loc[[800000]]
def time_loc_scalar(self, index, index_structure):
self.data.loc[800000]
def time_loc_slice(self, index, index_structure):
self.data.loc[:800000]
class NonNumericSeriesIndexing:
params = [
("string", "datetime", "period"),
("unique_monotonic_inc", "nonunique_monotonic_inc", "non_monotonic"),
]
param_names = ["index_dtype", "index_structure"]
def setup(self, index, index_structure):
N = 10**6
if index == "string":
index = tm.makeStringIndex(N)
elif index == "datetime":
index = date_range("1900", periods=N, freq="s")
elif index == "period":
index = period_range("1900", periods=N, freq="s")
index = index.sort_values()
assert index.is_unique and index.is_monotonic_increasing
if index_structure == "nonunique_monotonic_inc":
index = index.insert(item=index[2], loc=2)[:-1]
elif index_structure == "non_monotonic":
index = index[::2].append(index[1::2])
assert len(index) == N
self.s = Series(np.random.rand(N), index=index)
self.lbl = index[80000]
# warm up index mapping
self.s[self.lbl]
def time_getitem_label_slice(self, index, index_structure):
self.s[: self.lbl]
def time_getitem_pos_slice(self, index, index_structure):
self.s[:80000]
def time_getitem_scalar(self, index, index_structure):
self.s[self.lbl]
def time_getitem_list_like(self, index, index_structure):
self.s[[self.lbl]]
class DataFrameStringIndexing:
def setup(self):
index = tm.makeStringIndex(1000)
columns = tm.makeStringIndex(30)
with warnings.catch_warnings(record=True):
self.df = DataFrame(np.random.randn(1000, 30), index=index, columns=columns)
self.idx_scalar = index[100]
self.col_scalar = columns[10]
self.bool_indexer = self.df[self.col_scalar] > 0
self.bool_obj_indexer = self.bool_indexer.astype(object)
self.boolean_indexer = (self.df[self.col_scalar] > 0).astype("boolean")
def time_loc(self):
self.df.loc[self.idx_scalar, self.col_scalar]
def time_getitem_scalar(self):
self.df[self.col_scalar][self.idx_scalar]
def time_boolean_rows(self):
self.df[self.bool_indexer]
def time_boolean_rows_object(self):
self.df[self.bool_obj_indexer]
def time_boolean_rows_boolean(self):
self.df[self.boolean_indexer]
class DataFrameNumericIndexing:
params = [
(Int64Index, UInt64Index, Float64Index),
("unique_monotonic_inc", "nonunique_monotonic_inc"),
]
param_names = ["index_dtype", "index_structure"]
def setup(self, index, index_structure):
N = 10**5
indices = {
"unique_monotonic_inc": index(range(N)),
"nonunique_monotonic_inc": index(
list(range(55)) + [54] + list(range(55, N - 1))
),
}
self.idx_dupe = np.array(range(30)) * 99
self.df = DataFrame(np.random.randn(N, 5), index=indices[index_structure])
self.df_dup = concat([self.df, 2 * self.df, 3 * self.df])
self.bool_indexer = [True] * (N // 2) + [False] * (N - N // 2)
def time_iloc_dups(self, index, index_structure):
self.df_dup.iloc[self.idx_dupe]
def time_loc_dups(self, index, index_structure):
self.df_dup.loc[self.idx_dupe]
def time_iloc(self, index, index_structure):
self.df.iloc[:100, 0]
def time_loc(self, index, index_structure):
self.df.loc[:100, 0]
def time_bool_indexer(self, index, index_structure):
self.df[self.bool_indexer]
class Take:
params = ["int", "datetime"]
param_names = ["index"]
def setup(self, index):
N = 100000
indexes = {
"int": Int64Index(np.arange(N)),
"datetime": date_range("2011-01-01", freq="S", periods=N),
}
index = indexes[index]
self.s = Series(np.random.rand(N), index=index)
self.indexer = np.random.randint(0, N, size=N)
def time_take(self, index):
self.s.take(self.indexer)
class MultiIndexing:
params = [True, False]
param_names = ["unique_levels"]
def setup(self, unique_levels):
self.nlevels = 2
if unique_levels:
mi = MultiIndex.from_arrays([range(1000000)] * self.nlevels)
else:
mi = MultiIndex.from_product([range(1000)] * self.nlevels)
self.df = DataFrame(np.random.randn(len(mi)), index=mi)
self.tgt_slice = slice(200, 800)
self.tgt_null_slice = slice(None)
self.tgt_list = list(range(0, 1000, 10))
self.tgt_scalar = 500
bool_indexer = np.zeros(len(mi), dtype=np.bool_)
bool_indexer[slice(0, len(mi), 100)] = True
self.tgt_bool_indexer = bool_indexer
def time_loc_partial_key_slice(self, unique_levels):
self.df.loc[self.tgt_slice, :]
def time_loc_partial_key_null_slice(self, unique_levels):
self.df.loc[self.tgt_null_slice, :]
def time_loc_partial_key_list(self, unique_levels):
self.df.loc[self.tgt_list, :]
def time_loc_partial_key_scalar(self, unique_levels):
self.df.loc[self.tgt_scalar, :]
def time_loc_partial_key_bool_indexer(self, unique_levels):
self.df.loc[self.tgt_bool_indexer, :]
def time_loc_all_slices(self, unique_levels):
target = tuple([self.tgt_slice] * self.nlevels)
self.df.loc[target, :]
def time_loc_all_null_slices(self, unique_levels):
target = tuple([self.tgt_null_slice] * self.nlevels)
self.df.loc[target, :]
def time_loc_all_lists(self, unique_levels):
target = tuple([self.tgt_list] * self.nlevels)
self.df.loc[target, :]
def time_loc_all_scalars(self, unique_levels):
target = tuple([self.tgt_scalar] * self.nlevels)
self.df.loc[target, :]
def time_loc_all_bool_indexers(self, unique_levels):
target = tuple([self.tgt_bool_indexer] * self.nlevels)
self.df.loc[target, :]
def time_loc_slice_plus_null_slice(self, unique_levels):
target = (self.tgt_slice, self.tgt_null_slice)
self.df.loc[target, :]
def time_loc_null_slice_plus_slice(self, unique_levels):
target = (self.tgt_null_slice, self.tgt_slice)
self.df.loc[target, :]
def time_xs_level_0(self, unique_levels):
target = self.tgt_scalar
self.df.xs(target, level=0)
def time_xs_level_1(self, unique_levels):
target = self.tgt_scalar
self.df.xs(target, level=1)
def time_xs_full_key(self, unique_levels):
target = tuple([self.tgt_scalar] * self.nlevels)
self.df.xs(target)
class IntervalIndexing:
def setup_cache(self):
idx = IntervalIndex.from_breaks(np.arange(1000001))
monotonic = Series(np.arange(1000000), index=idx)
return monotonic
def time_getitem_scalar(self, monotonic):
monotonic[80000]
def time_loc_scalar(self, monotonic):
monotonic.loc[80000]
def time_getitem_list(self, monotonic):
monotonic[80000:]
def time_loc_list(self, monotonic):
monotonic.loc[80000:]
class DatetimeIndexIndexing:
def setup(self):
dti = date_range("2016-01-01", periods=10000, tz="US/Pacific")
dti2 = dti.tz_convert("UTC")
self.dti = dti
self.dti2 = dti2
def time_get_indexer_mismatched_tz(self):
# reached via e.g.
# ser = Series(range(len(dti)), index=dti)
# ser[dti2]
self.dti.get_indexer(self.dti2)
class SortedAndUnsortedDatetimeIndexLoc:
def setup(self):
dti = date_range("2016-01-01", periods=10000, tz="US/Pacific")
index = np.array(dti)
unsorted_index = index.copy()
unsorted_index[10] = unsorted_index[20]
self.df_unsorted = DataFrame(index=unsorted_index, data={"a": 1})
self.df_sort = DataFrame(index=index, data={"a": 1})
def time_loc_unsorted(self):
self.df_unsorted.loc["2016-6-11"]
def time_loc_sorted(self):
self.df_sort.loc["2016-6-11"]
class CategoricalIndexIndexing:
params = ["monotonic_incr", "monotonic_decr", "non_monotonic"]
param_names = ["index"]
def setup(self, index):
N = 10**5
values = list("a" * N + "b" * N + "c" * N)
indices = {
"monotonic_incr": CategoricalIndex(values),
"monotonic_decr": CategoricalIndex(reversed(values)),
"non_monotonic": CategoricalIndex(list("abc" * N)),
}
self.data = indices[index]
self.data_unique = CategoricalIndex(
["".join(perm) for perm in itertools.permutations(string.printable, 3)]
)
self.int_scalar = 10000
self.int_list = list(range(10000))
self.cat_scalar = "b"
self.cat_list = ["a", "c"]
def time_getitem_scalar(self, index):
self.data[self.int_scalar]
def time_getitem_slice(self, index):
self.data[: self.int_scalar]
def time_getitem_list_like(self, index):
self.data[[self.int_scalar]]
def time_getitem_list(self, index):
self.data[self.int_list]
def time_getitem_bool_array(self, index):
self.data[self.data == self.cat_scalar]
def time_get_loc_scalar(self, index):
self.data.get_loc(self.cat_scalar)
def time_get_indexer_list(self, index):
self.data_unique.get_indexer(self.cat_list)
class MethodLookup:
def setup_cache(self):
s = Series()
return s
def time_lookup_iloc(self, s):
s.iloc
def time_lookup_loc(self, s):
s.loc
class GetItemSingleColumn:
def setup(self):
self.df_string_col = DataFrame(np.random.randn(3000, 1), columns=["A"])
self.df_int_col = DataFrame(np.random.randn(3000, 1))
def time_frame_getitem_single_column_label(self):
self.df_string_col["A"]
def time_frame_getitem_single_column_int(self):
self.df_int_col[0]
class IndexSingleRow:
params = [True, False]
param_names = ["unique_cols"]
def setup(self, unique_cols):
arr = np.arange(10**7).reshape(-1, 10)
df = DataFrame(arr)
dtypes = ["u1", "u2", "u4", "u8", "i1", "i2", "i4", "i8", "f8", "f4"]
for i, d in enumerate(dtypes):
df[i] = df[i].astype(d)
if not unique_cols:
# GH#33032 single-row lookups with non-unique columns were
# 15x slower than with unique columns
df.columns = ["A", "A"] + list(df.columns[2:])
self.df = df
def time_iloc_row(self, unique_cols):
self.df.iloc[10000]
def time_loc_row(self, unique_cols):
self.df.loc[10000]
class AssignTimeseriesIndex:
def setup(self):
N = 100000
idx = date_range("1/1/2000", periods=N, freq="H")
self.df = DataFrame(np.random.randn(N, 1), columns=["A"], index=idx)
def time_frame_assign_timeseries_index(self):
self.df["date"] = self.df.index
class InsertColumns:
def setup(self):
self.N = 10**3
self.df = DataFrame(index=range(self.N))
self.df2 = DataFrame(np.random.randn(self.N, 2))
def time_insert(self):
for i in range(100):
self.df.insert(0, i, np.random.randn(self.N), allow_duplicates=True)
def time_insert_middle(self):
# same as time_insert but inserting to a middle column rather than
# front or back (which have fast-paths)
for i in range(100):
self.df2.insert(
1, "colname", np.random.randn(self.N), allow_duplicates=True
)
def time_assign_with_setitem(self):
for i in range(100):
self.df[i] = np.random.randn(self.N)
def time_assign_list_like_with_setitem(self):
self.df[list(range(100))] = np.random.randn(self.N, 100)
def time_assign_list_of_columns_concat(self):
df = DataFrame(np.random.randn(self.N, 100))
concat([self.df, df], axis=1)
class ChainIndexing:
params = [None, "warn"]
param_names = ["mode"]
def setup(self, mode):
self.N = 1000000
self.df = DataFrame({"A": np.arange(self.N), "B": "foo"})
def time_chained_indexing(self, mode):
df = self.df
N = self.N
with warnings.catch_warnings(record=True):
with option_context("mode.chained_assignment", mode):
df2 = df[df.A > N // 2]
df2["C"] = 1.0
from .pandas_vb_common import setup # noqa: F401 isort:skip