forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex_object.py
242 lines (176 loc) · 6.19 KB
/
index_object.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import gc
import numpy as np
from pandas import (
DatetimeIndex,
Float64Index,
Index,
IntervalIndex,
MultiIndex,
RangeIndex,
Series,
date_range,
)
from .pandas_vb_common import tm
class SetOperations:
params = (
["datetime", "date_string", "int", "strings"],
["intersection", "union", "symmetric_difference"],
)
param_names = ["dtype", "method"]
def setup(self, dtype, method):
N = 10**5
dates_left = date_range("1/1/2000", periods=N, freq="T")
fmt = "%Y-%m-%d %H:%M:%S"
date_str_left = Index(dates_left.strftime(fmt))
int_left = Index(np.arange(N))
str_left = tm.makeStringIndex(N)
data = {
"datetime": {"left": dates_left, "right": dates_left[:-1]},
"date_string": {"left": date_str_left, "right": date_str_left[:-1]},
"int": {"left": int_left, "right": int_left[:-1]},
"strings": {"left": str_left, "right": str_left[:-1]},
}
self.left = data[dtype]["left"]
self.right = data[dtype]["right"]
def time_operation(self, dtype, method):
getattr(self.left, method)(self.right)
class SetDisjoint:
def setup(self):
N = 10**5
B = N + 20000
self.datetime_left = DatetimeIndex(range(N))
self.datetime_right = DatetimeIndex(range(N, B))
def time_datetime_difference_disjoint(self):
self.datetime_left.difference(self.datetime_right)
class Range:
def setup(self):
self.idx_inc = RangeIndex(start=0, stop=10**6, step=3)
self.idx_dec = RangeIndex(start=10**6, stop=-1, step=-3)
def time_max(self):
self.idx_inc.max()
def time_max_trivial(self):
self.idx_dec.max()
def time_min(self):
self.idx_dec.min()
def time_min_trivial(self):
self.idx_inc.min()
def time_get_loc_inc(self):
self.idx_inc.get_loc(900_000)
def time_get_loc_dec(self):
self.idx_dec.get_loc(100_000)
def time_iter_inc(self):
for _ in self.idx_inc:
pass
def time_iter_dec(self):
for _ in self.idx_dec:
pass
def time_sort_values_asc(self):
self.idx_inc.sort_values()
def time_sort_values_des(self):
self.idx_inc.sort_values(ascending=False)
class IndexEquals:
def setup(self):
idx_large_fast = RangeIndex(100_000)
idx_small_slow = date_range(start="1/1/2012", periods=1)
self.mi_large_slow = MultiIndex.from_product([idx_large_fast, idx_small_slow])
self.idx_non_object = RangeIndex(1)
def time_non_object_equals_multiindex(self):
self.idx_non_object.equals(self.mi_large_slow)
class IndexAppend:
def setup(self):
N = 10_000
self.range_idx = RangeIndex(0, 100)
self.int_idx = self.range_idx.astype(int)
self.obj_idx = self.int_idx.astype(str)
self.range_idxs = []
self.int_idxs = []
self.object_idxs = []
for i in range(1, N):
r_idx = RangeIndex(i * 100, (i + 1) * 100)
self.range_idxs.append(r_idx)
i_idx = r_idx.astype(int)
self.int_idxs.append(i_idx)
o_idx = i_idx.astype(str)
self.object_idxs.append(o_idx)
def time_append_range_list(self):
self.range_idx.append(self.range_idxs)
def time_append_int_list(self):
self.int_idx.append(self.int_idxs)
def time_append_obj_list(self):
self.obj_idx.append(self.object_idxs)
class Indexing:
params = ["String", "Float", "Int"]
param_names = ["dtype"]
def setup(self, dtype):
N = 10**6
self.idx = getattr(tm, f"make{dtype}Index")(N)
self.array_mask = (np.arange(N) % 3) == 0
self.series_mask = Series(self.array_mask)
self.sorted = self.idx.sort_values()
half = N // 2
self.non_unique = self.idx[:half].append(self.idx[:half])
self.non_unique_sorted = (
self.sorted[:half].append(self.sorted[:half]).sort_values()
)
self.key = self.sorted[N // 4]
def time_boolean_array(self, dtype):
self.idx[self.array_mask]
def time_boolean_series(self, dtype):
self.idx[self.series_mask]
def time_get(self, dtype):
self.idx[1]
def time_slice(self, dtype):
self.idx[:-1]
def time_slice_step(self, dtype):
self.idx[::2]
def time_get_loc(self, dtype):
self.idx.get_loc(self.key)
def time_get_loc_sorted(self, dtype):
self.sorted.get_loc(self.key)
def time_get_loc_non_unique(self, dtype):
self.non_unique.get_loc(self.key)
def time_get_loc_non_unique_sorted(self, dtype):
self.non_unique_sorted.get_loc(self.key)
class Float64IndexMethod:
# GH 13166
def setup(self):
N = 100_000
a = np.arange(N)
self.ind = Float64Index(a * 4.8000000418824129e-08)
def time_get_loc(self):
self.ind.get_loc(0)
class IntervalIndexMethod:
# GH 24813
params = [10**3, 10**5]
def setup(self, N):
left = np.append(np.arange(N), np.array(0))
right = np.append(np.arange(1, N + 1), np.array(1))
self.intv = IntervalIndex.from_arrays(left, right)
self.intv._engine
self.intv2 = IntervalIndex.from_arrays(left + 1, right + 1)
self.intv2._engine
self.left = IntervalIndex.from_breaks(np.arange(N))
self.right = IntervalIndex.from_breaks(np.arange(N - 3, 2 * N - 3))
def time_monotonic_inc(self, N):
self.intv.is_monotonic_increasing
def time_is_unique(self, N):
self.intv.is_unique
def time_intersection(self, N):
self.left.intersection(self.right)
def time_intersection_one_duplicate(self, N):
self.intv.intersection(self.right)
def time_intersection_both_duplicate(self, N):
self.intv.intersection(self.intv2)
class GC:
params = [1, 2, 5]
def create_use_drop(self):
idx = Index(list(range(1_000_000)))
idx._engine
def peakmem_gc_instances(self, N):
try:
gc.disable()
for _ in range(N):
self.create_use_drop()
finally:
gc.enable()
from .pandas_vb_common import setup # noqa: F401 isort:skip