forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframe_methods.py
770 lines (568 loc) · 20.8 KB
/
frame_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
import string
import warnings
import numpy as np
from pandas import (
DataFrame,
MultiIndex,
NaT,
Series,
date_range,
isnull,
period_range,
timedelta_range,
)
from .pandas_vb_common import tm
class GetNumericData:
def setup(self):
self.df = DataFrame(np.random.randn(10000, 25))
self.df["foo"] = "bar"
self.df["bar"] = "baz"
self.df = self.df._consolidate()
def time_frame_get_numeric_data(self):
self.df._get_numeric_data()
class Lookup:
def setup(self):
self.df = DataFrame(np.random.randn(10000, 8), columns=list("abcdefgh"))
self.df["foo"] = "bar"
self.row_labels = list(self.df.index[::10])[:900]
self.col_labels = list(self.df.columns) * 100
self.row_labels_all = np.array(
list(self.df.index) * len(self.df.columns), dtype="object"
)
self.col_labels_all = np.array(
list(self.df.columns) * len(self.df.index), dtype="object"
)
def time_frame_fancy_lookup(self):
self.df.lookup(self.row_labels, self.col_labels)
def time_frame_fancy_lookup_all(self):
self.df.lookup(self.row_labels_all, self.col_labels_all)
class Reindex:
def setup(self):
N = 10**3
self.df = DataFrame(np.random.randn(N * 10, N))
self.idx = np.arange(4 * N, 7 * N)
self.idx_cols = np.random.randint(0, N, N)
self.df2 = DataFrame(
{
c: {
0: np.random.randint(0, 2, N).astype(np.bool_),
1: np.random.randint(0, N, N).astype(np.int16),
2: np.random.randint(0, N, N).astype(np.int32),
3: np.random.randint(0, N, N).astype(np.int64),
}[np.random.randint(0, 4)]
for c in range(N)
}
)
def time_reindex_axis0(self):
self.df.reindex(self.idx)
def time_reindex_axis1(self):
self.df.reindex(columns=self.idx_cols)
def time_reindex_axis1_missing(self):
self.df.reindex(columns=self.idx)
def time_reindex_both_axes(self):
self.df.reindex(index=self.idx, columns=self.idx_cols)
def time_reindex_upcast(self):
self.df2.reindex(np.random.permutation(range(1200)))
class Rename:
def setup(self):
N = 10**3
self.df = DataFrame(np.random.randn(N * 10, N))
self.idx = np.arange(4 * N, 7 * N)
self.dict_idx = {k: k for k in self.idx}
self.df2 = DataFrame(
{
c: {
0: np.random.randint(0, 2, N).astype(np.bool_),
1: np.random.randint(0, N, N).astype(np.int16),
2: np.random.randint(0, N, N).astype(np.int32),
3: np.random.randint(0, N, N).astype(np.int64),
}[np.random.randint(0, 4)]
for c in range(N)
}
)
def time_rename_single(self):
self.df.rename({0: 0})
def time_rename_axis0(self):
self.df.rename(self.dict_idx)
def time_rename_axis1(self):
self.df.rename(columns=self.dict_idx)
def time_rename_both_axes(self):
self.df.rename(index=self.dict_idx, columns=self.dict_idx)
def time_dict_rename_both_axes(self):
self.df.rename(index=self.dict_idx, columns=self.dict_idx)
class Iteration:
# mem_itertuples_* benchmarks are slow
timeout = 120
def setup(self):
N = 1000
self.df = DataFrame(np.random.randn(N * 10, N))
self.df2 = DataFrame(np.random.randn(N * 50, 10))
self.df3 = DataFrame(
np.random.randn(N, 5 * N), columns=["C" + str(c) for c in range(N * 5)]
)
self.df4 = DataFrame(np.random.randn(N * 1000, 10))
def time_items(self):
# (monitor no-copying behaviour)
if hasattr(self.df, "_item_cache"):
self.df._item_cache.clear()
for name, col in self.df.items():
pass
def time_items_cached(self):
for name, col in self.df.items():
pass
def time_iteritems_indexing(self):
for col in self.df3:
self.df3[col]
def time_itertuples_start(self):
self.df4.itertuples()
def time_itertuples_read_first(self):
next(self.df4.itertuples())
def time_itertuples(self):
for row in self.df4.itertuples():
pass
def time_itertuples_to_list(self):
list(self.df4.itertuples())
def mem_itertuples_start(self):
return self.df4.itertuples()
def peakmem_itertuples_start(self):
self.df4.itertuples()
def mem_itertuples_read_first(self):
return next(self.df4.itertuples())
def peakmem_itertuples(self):
for row in self.df4.itertuples():
pass
def mem_itertuples_to_list(self):
return list(self.df4.itertuples())
def peakmem_itertuples_to_list(self):
list(self.df4.itertuples())
def time_itertuples_raw_start(self):
self.df4.itertuples(index=False, name=None)
def time_itertuples_raw_read_first(self):
next(self.df4.itertuples(index=False, name=None))
def time_itertuples_raw_tuples(self):
for row in self.df4.itertuples(index=False, name=None):
pass
def time_itertuples_raw_tuples_to_list(self):
list(self.df4.itertuples(index=False, name=None))
def mem_itertuples_raw_start(self):
return self.df4.itertuples(index=False, name=None)
def peakmem_itertuples_raw_start(self):
self.df4.itertuples(index=False, name=None)
def peakmem_itertuples_raw_read_first(self):
next(self.df4.itertuples(index=False, name=None))
def peakmem_itertuples_raw(self):
for row in self.df4.itertuples(index=False, name=None):
pass
def mem_itertuples_raw_to_list(self):
return list(self.df4.itertuples(index=False, name=None))
def peakmem_itertuples_raw_to_list(self):
list(self.df4.itertuples(index=False, name=None))
def time_iterrows(self):
for row in self.df.iterrows():
pass
class ToString:
def setup(self):
self.df = DataFrame(np.random.randn(100, 10))
def time_to_string_floats(self):
self.df.to_string()
class ToHTML:
def setup(self):
nrows = 500
self.df2 = DataFrame(np.random.randn(nrows, 10))
self.df2[0] = period_range("2000", periods=nrows)
self.df2[1] = range(nrows)
def time_to_html_mixed(self):
self.df2.to_html()
class ToDict:
params = [["dict", "list", "series", "split", "records", "index"]]
param_names = ["orient"]
def setup(self, orient):
data = np.random.randint(0, 1000, size=(10000, 4))
self.int_df = DataFrame(data)
self.datetimelike_df = self.int_df.astype("timedelta64[ns]")
def time_to_dict_ints(self, orient):
self.int_df.to_dict(orient=orient)
def time_to_dict_datetimelike(self, orient):
self.datetimelike_df.to_dict(orient=orient)
class ToNumpy:
def setup(self):
N = 10000
M = 10
self.df_tall = DataFrame(np.random.randn(N, M))
self.df_wide = DataFrame(np.random.randn(M, N))
self.df_mixed_tall = self.df_tall.copy()
self.df_mixed_tall["foo"] = "bar"
self.df_mixed_tall[0] = period_range("2000", periods=N)
self.df_mixed_tall[1] = range(N)
self.df_mixed_wide = self.df_wide.copy()
self.df_mixed_wide["foo"] = "bar"
self.df_mixed_wide[0] = period_range("2000", periods=M)
self.df_mixed_wide[1] = range(M)
def time_to_numpy_tall(self):
self.df_tall.to_numpy()
def time_to_numpy_wide(self):
self.df_wide.to_numpy()
def time_to_numpy_mixed_tall(self):
self.df_mixed_tall.to_numpy()
def time_to_numpy_mixed_wide(self):
self.df_mixed_wide.to_numpy()
def time_values_tall(self):
self.df_tall.values
def time_values_wide(self):
self.df_wide.values
def time_values_mixed_tall(self):
self.df_mixed_tall.values
def time_values_mixed_wide(self):
self.df_mixed_wide.values
class ToRecords:
def setup(self):
N = 100_000
data = np.random.randn(N, 2)
mi = MultiIndex.from_arrays(
[
np.arange(N),
date_range("1970-01-01", periods=N, freq="ms"),
]
)
self.df = DataFrame(data)
self.df_mi = DataFrame(data, index=mi)
def time_to_records(self):
self.df.to_records(index=True)
def time_to_records_multiindex(self):
self.df_mi.to_records(index=True)
class Repr:
def setup(self):
nrows = 10000
data = np.random.randn(nrows, 10)
arrays = np.tile(np.random.randn(3, nrows // 100), 100)
idx = MultiIndex.from_arrays(arrays)
self.df3 = DataFrame(data, index=idx)
self.df4 = DataFrame(data, index=np.random.randn(nrows))
self.df_tall = DataFrame(np.random.randn(nrows, 10))
self.df_wide = DataFrame(np.random.randn(10, nrows))
def time_html_repr_trunc_mi(self):
self.df3._repr_html_()
def time_html_repr_trunc_si(self):
self.df4._repr_html_()
def time_repr_tall(self):
repr(self.df_tall)
def time_frame_repr_wide(self):
repr(self.df_wide)
class MaskBool:
def setup(self):
data = np.random.randn(1000, 500)
df = DataFrame(data)
df = df.where(df > 0)
self.bools = df > 0
self.mask = isnull(df)
def time_frame_mask_bools(self):
self.bools.mask(self.mask)
def time_frame_mask_floats(self):
self.bools.astype(float).mask(self.mask)
class Isnull:
def setup(self):
N = 10**3
self.df_no_null = DataFrame(np.random.randn(N, N))
sample = np.array([np.nan, 1.0])
data = np.random.choice(sample, (N, N))
self.df = DataFrame(data)
sample = np.array(list(string.ascii_letters + string.whitespace))
data = np.random.choice(sample, (N, N))
self.df_strings = DataFrame(data)
sample = np.array(
[
NaT,
np.nan,
None,
np.datetime64("NaT"),
np.timedelta64("NaT"),
0,
1,
2.0,
"",
"abcd",
]
)
data = np.random.choice(sample, (N, N))
self.df_obj = DataFrame(data)
def time_isnull_floats_no_null(self):
isnull(self.df_no_null)
def time_isnull(self):
isnull(self.df)
def time_isnull_strngs(self):
isnull(self.df_strings)
def time_isnull_obj(self):
isnull(self.df_obj)
class Fillna:
params = (
[True, False],
["pad", "bfill"],
[
"float64",
"float32",
"object",
"Int64",
"Float64",
"datetime64[ns]",
"datetime64[ns, tz]",
"timedelta64[ns]",
],
)
param_names = ["inplace", "method", "dtype"]
def setup(self, inplace, method, dtype):
N, M = 10000, 100
if dtype in ("datetime64[ns]", "datetime64[ns, tz]", "timedelta64[ns]"):
data = {
"datetime64[ns]": date_range("2011-01-01", freq="H", periods=N),
"datetime64[ns, tz]": date_range(
"2011-01-01", freq="H", periods=N, tz="Asia/Tokyo"
),
"timedelta64[ns]": timedelta_range(start="1 day", periods=N, freq="1D"),
}
self.df = DataFrame({f"col_{i}": data[dtype] for i in range(M)})
self.df[::2] = None
else:
values = np.random.randn(N, M)
values[::2] = np.nan
if dtype == "Int64":
values = values.round()
self.df = DataFrame(values, dtype=dtype)
def time_frame_fillna(self, inplace, method, dtype):
self.df.fillna(inplace=inplace, method=method)
class Dropna:
params = (["all", "any"], [0, 1])
param_names = ["how", "axis"]
def setup(self, how, axis):
self.df = DataFrame(np.random.randn(10000, 1000))
self.df.iloc[50:1000, 20:50] = np.nan
self.df.iloc[2000:3000] = np.nan
self.df.iloc[:, 60:70] = np.nan
self.df_mixed = self.df.copy()
self.df_mixed["foo"] = "bar"
def time_dropna(self, how, axis):
self.df.dropna(how=how, axis=axis)
def time_dropna_axis_mixed_dtypes(self, how, axis):
self.df_mixed.dropna(how=how, axis=axis)
class Count:
params = [0, 1]
param_names = ["axis"]
def setup(self, axis):
self.df = DataFrame(np.random.randn(10000, 1000))
self.df.iloc[50:1000, 20:50] = np.nan
self.df.iloc[2000:3000] = np.nan
self.df.iloc[:, 60:70] = np.nan
self.df_mixed = self.df.copy()
self.df_mixed["foo"] = "bar"
self.df.index = MultiIndex.from_arrays([self.df.index, self.df.index])
self.df.columns = MultiIndex.from_arrays([self.df.columns, self.df.columns])
self.df_mixed.index = MultiIndex.from_arrays(
[self.df_mixed.index, self.df_mixed.index]
)
self.df_mixed.columns = MultiIndex.from_arrays(
[self.df_mixed.columns, self.df_mixed.columns]
)
def time_count_level_multi(self, axis):
self.df.count(axis=axis, level=1)
def time_count_level_mixed_dtypes_multi(self, axis):
self.df_mixed.count(axis=axis, level=1)
class Apply:
def setup(self):
self.df = DataFrame(np.random.randn(1000, 100))
self.s = Series(np.arange(1028.0))
self.df2 = DataFrame({i: self.s for i in range(1028)})
self.df3 = DataFrame(np.random.randn(1000, 3), columns=list("ABC"))
def time_apply_user_func(self):
self.df2.apply(lambda x: np.corrcoef(x, self.s)[(0, 1)])
def time_apply_axis_1(self):
self.df.apply(lambda x: x + 1, axis=1)
def time_apply_lambda_mean(self):
self.df.apply(lambda x: x.mean())
def time_apply_np_mean(self):
self.df.apply(np.mean)
def time_apply_pass_thru(self):
self.df.apply(lambda x: x)
def time_apply_ref_by_name(self):
self.df3.apply(lambda x: x["A"] + x["B"], axis=1)
class Dtypes:
def setup(self):
self.df = DataFrame(np.random.randn(1000, 1000))
def time_frame_dtypes(self):
self.df.dtypes
class Equals:
def setup(self):
N = 10**3
self.float_df = DataFrame(np.random.randn(N, N))
self.float_df_nan = self.float_df.copy()
self.float_df_nan.iloc[-1, -1] = np.nan
self.object_df = DataFrame("foo", index=range(N), columns=range(N))
self.object_df_nan = self.object_df.copy()
self.object_df_nan.iloc[-1, -1] = np.nan
self.nonunique_cols = self.object_df.copy()
self.nonunique_cols.columns = ["A"] * len(self.nonunique_cols.columns)
self.nonunique_cols_nan = self.nonunique_cols.copy()
self.nonunique_cols_nan.iloc[-1, -1] = np.nan
def time_frame_float_equal(self):
self.float_df.equals(self.float_df)
def time_frame_float_unequal(self):
self.float_df.equals(self.float_df_nan)
def time_frame_nonunique_equal(self):
self.nonunique_cols.equals(self.nonunique_cols)
def time_frame_nonunique_unequal(self):
self.nonunique_cols.equals(self.nonunique_cols_nan)
def time_frame_object_equal(self):
self.object_df.equals(self.object_df)
def time_frame_object_unequal(self):
self.object_df.equals(self.object_df_nan)
class Interpolate:
params = [None, "infer"]
param_names = ["downcast"]
def setup(self, downcast):
N = 10000
# this is the worst case, where every column has NaNs.
arr = np.random.randn(N, 100)
# NB: we need to set values in array, not in df.values, otherwise
# the benchmark will be misleading for ArrayManager
arr[::2] = np.nan
self.df = DataFrame(arr)
self.df2 = DataFrame(
{
"A": np.arange(0, N),
"B": np.random.randint(0, 100, N),
"C": np.random.randn(N),
"D": np.random.randn(N),
}
)
self.df2.loc[1::5, "A"] = np.nan
self.df2.loc[1::5, "C"] = np.nan
def time_interpolate(self, downcast):
self.df.interpolate(downcast=downcast)
def time_interpolate_some_good(self, downcast):
self.df2.interpolate(downcast=downcast)
class Shift:
# frame shift speedup issue-5609
params = [0, 1]
param_names = ["axis"]
def setup(self, axis):
self.df = DataFrame(np.random.rand(10000, 500))
def time_shift(self, axis):
self.df.shift(1, axis=axis)
class Nunique:
def setup(self):
self.df = DataFrame(np.random.randn(10000, 1000))
def time_frame_nunique(self):
self.df.nunique()
class SeriesNuniqueWithNan:
def setup(self):
self.ser = Series(100000 * (100 * [np.nan] + list(range(100)))).astype(float)
def time_series_nunique_nan(self):
self.ser.nunique()
class Duplicated:
def setup(self):
n = 1 << 20
t = date_range("2015-01-01", freq="S", periods=(n // 64))
xs = np.random.randn(n // 64).round(2)
self.df = DataFrame(
{
"a": np.random.randint(-1 << 8, 1 << 8, n),
"b": np.random.choice(t, n),
"c": np.random.choice(xs, n),
}
)
self.df2 = DataFrame(np.random.randn(1000, 100).astype(str)).T
def time_frame_duplicated(self):
self.df.duplicated()
def time_frame_duplicated_wide(self):
self.df2.duplicated()
def time_frame_duplicated_subset(self):
self.df.duplicated(subset=["a"])
class XS:
params = [0, 1]
param_names = ["axis"]
def setup(self, axis):
self.N = 10**4
self.df = DataFrame(np.random.randn(self.N, self.N))
def time_frame_xs(self, axis):
self.df.xs(self.N / 2, axis=axis)
class SortValues:
params = [True, False]
param_names = ["ascending"]
def setup(self, ascending):
self.df = DataFrame(np.random.randn(1000000, 2), columns=list("AB"))
def time_frame_sort_values(self, ascending):
self.df.sort_values(by="A", ascending=ascending)
class SortIndexByColumns:
def setup(self):
N = 10000
K = 10
self.df = DataFrame(
{
"key1": tm.makeStringIndex(N).values.repeat(K),
"key2": tm.makeStringIndex(N).values.repeat(K),
"value": np.random.randn(N * K),
}
)
def time_frame_sort_values_by_columns(self):
self.df.sort_values(by=["key1", "key2"])
class Quantile:
params = [0, 1]
param_names = ["axis"]
def setup(self, axis):
self.df = DataFrame(np.random.randn(1000, 3), columns=list("ABC"))
def time_frame_quantile(self, axis):
self.df.quantile([0.1, 0.5], axis=axis)
class Rank:
param_names = ["dtype"]
params = [
["int", "uint", "float", "object"],
]
def setup(self, dtype):
self.df = DataFrame(
np.random.randn(10000, 10).astype(dtype), columns=range(10), dtype=dtype
)
def time_rank(self, dtype):
self.df.rank()
class GetDtypeCounts:
# 2807
def setup(self):
self.df = DataFrame(np.random.randn(10, 10000))
def time_frame_get_dtype_counts(self):
with warnings.catch_warnings(record=True):
self.df.dtypes.value_counts()
def time_info(self):
self.df.info()
class NSort:
params = ["first", "last", "all"]
param_names = ["keep"]
def setup(self, keep):
self.df = DataFrame(np.random.randn(100000, 3), columns=list("ABC"))
def time_nlargest_one_column(self, keep):
self.df.nlargest(100, "A", keep=keep)
def time_nlargest_two_columns(self, keep):
self.df.nlargest(100, ["A", "B"], keep=keep)
def time_nsmallest_one_column(self, keep):
self.df.nsmallest(100, "A", keep=keep)
def time_nsmallest_two_columns(self, keep):
self.df.nsmallest(100, ["A", "B"], keep=keep)
class Describe:
def setup(self):
self.df = DataFrame(
{
"a": np.random.randint(0, 100, 10**6),
"b": np.random.randint(0, 100, 10**6),
"c": np.random.randint(0, 100, 10**6),
}
)
def time_series_describe(self):
self.df["a"].describe()
def time_dataframe_describe(self):
self.df.describe()
class MemoryUsage:
def setup(self):
self.df = DataFrame(np.random.randn(100000, 2), columns=list("AB"))
self.df2 = self.df.copy()
self.df2["A"] = self.df2["A"].astype("object")
def time_memory_usage(self):
self.df.memory_usage(deep=True)
def time_memory_usage_object_dtype(self):
self.df2.memory_usage(deep=True)
from .pandas_vb_common import setup # noqa: F401 isort:skip