forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
117 lines (86 loc) · 3.89 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from .pandas_vb_common import *
import pandas as pd
class DtypeInfer(object):
goal_time = 0.2
# from GH 7332
def setup(self):
self.N = 500000
self.df_int64 = DataFrame(dict(A=np.arange(self.N, dtype='int64'),
B=np.arange(self.N, dtype='int64')))
self.df_int32 = DataFrame(dict(A=np.arange(self.N, dtype='int32'),
B=np.arange(self.N, dtype='int32')))
self.df_uint32 = DataFrame(dict(A=np.arange(self.N, dtype='uint32'),
B=np.arange(self.N, dtype='uint32')))
self.df_float64 = DataFrame(dict(A=np.arange(self.N, dtype='float64'),
B=np.arange(self.N, dtype='float64')))
self.df_float32 = DataFrame(dict(A=np.arange(self.N, dtype='float32'),
B=np.arange(self.N, dtype='float32')))
self.df_datetime64 = DataFrame(dict(A=pd.to_datetime(np.arange(self.N, dtype='int64'), unit='ms'),
B=pd.to_datetime(np.arange(self.N, dtype='int64'), unit='ms')))
self.df_timedelta64 = DataFrame(dict(A=(self.df_datetime64['A'] - self.df_datetime64['B']),
B=self.df_datetime64['B']))
def time_int64(self):
(self.df_int64['A'] + self.df_int64['B'])
def time_int32(self):
(self.df_int32['A'] + self.df_int32['B'])
def time_uint32(self):
(self.df_uint32['A'] + self.df_uint32['B'])
def time_float64(self):
(self.df_float64['A'] + self.df_float64['B'])
def time_float32(self):
(self.df_float32['A'] + self.df_float32['B'])
def time_datetime64(self):
(self.df_datetime64['A'] - self.df_datetime64['B'])
def time_timedelta64_1(self):
(self.df_timedelta64['A'] + self.df_timedelta64['B'])
def time_timedelta64_2(self):
(self.df_timedelta64['A'] + self.df_timedelta64['A'])
class to_numeric(object):
goal_time = 0.2
def setup(self):
self.n = 10000
self.float = Series(np.random.randn(self.n * 100))
self.numstr = self.float.astype('str')
self.str = Series(tm.makeStringIndex(self.n))
def time_from_float(self):
pd.to_numeric(self.float)
def time_from_numeric_str(self):
pd.to_numeric(self.numstr)
def time_from_str_ignore(self):
pd.to_numeric(self.str, errors='ignore')
def time_from_str_coerce(self):
pd.to_numeric(self.str, errors='coerce')
class to_numeric_downcast(object):
param_names = ['dtype', 'downcast']
params = [['string-float', 'string-int', 'string-nint', 'datetime64',
'int-list', 'int32'],
[None, 'integer', 'signed', 'unsigned', 'float']]
N = 500000
N2 = int(N / 2)
data_dict = {
'string-int': (['1'] * N2) + ([2] * N2),
'string-nint': (['-1'] * N2) + ([2] * N2),
'datetime64': np.repeat(np.array(['1970-01-01', '1970-01-02'],
dtype='datetime64[D]'), N),
'string-float': (['1.1'] * N2) + ([2] * N2),
'int-list': ([1] * N2) + ([2] * N2),
'int32': np.repeat(np.int32(1), N)
}
def setup(self, dtype, downcast):
self.data = self.data_dict[dtype]
def time_downcast(self, dtype, downcast):
pd.to_numeric(self.data, downcast=downcast)
class MaybeConvertNumeric(object):
def setup(self):
n = 1000000
arr = np.repeat([2**63], n)
arr = arr + np.arange(n).astype('uint64')
arr = np.array([arr[i] if i%2 == 0 else
str(arr[i]) for i in range(n)],
dtype=object)
arr[-1] = -1
self.data = arr
self.na_values = set()
def time_convert(self):
lib.maybe_convert_numeric(self.data, self.na_values,
coerce_numeric=False)