forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreplace.py
59 lines (41 loc) · 1.56 KB
/
replace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import pandas as pd
class FillNa:
params = [True, False]
param_names = ["inplace"]
def setup(self, inplace):
N = 10 ** 6
rng = pd.date_range("1/1/2000", periods=N, freq="min")
data = np.random.randn(N)
data[::2] = np.nan
self.ts = pd.Series(data, index=rng)
def time_fillna(self, inplace):
self.ts.fillna(0.0, inplace=inplace)
def time_replace(self, inplace):
self.ts.replace(np.nan, 0.0, inplace=inplace)
class ReplaceDict:
params = [True, False]
param_names = ["inplace"]
def setup(self, inplace):
N = 10 ** 5
start_value = 10 ** 5
self.to_rep = dict(enumerate(np.arange(N) + start_value))
self.s = pd.Series(np.random.randint(N, size=10 ** 3))
def time_replace_series(self, inplace):
self.s.replace(self.to_rep, inplace=inplace)
class Convert:
params = (["DataFrame", "Series"], ["Timestamp", "Timedelta"])
param_names = ["constructor", "replace_data"]
def setup(self, constructor, replace_data):
N = 10 ** 3
data = {
"Series": pd.Series(np.random.randint(N, size=N)),
"DataFrame": pd.DataFrame(
{"A": np.random.randint(N, size=N), "B": np.random.randint(N, size=N)}
),
}
self.to_replace = {i: getattr(pd, replace_data) for i in range(N)}
self.data = data[constructor]
def time_replace(self, constructor, replace_data):
self.data.replace(self.to_replace)
from .pandas_vb_common import setup # noqa: F401