-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcls_u32.c
executable file
·845 lines (715 loc) · 20.5 KB
/
cls_u32.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
/*
* net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* The filters are packed to hash tables of key nodes
* with a set of 32bit key/mask pairs at every node.
* Nodes reference next level hash tables etc.
*
* This scheme is the best universal classifier I managed to
* invent; it is not super-fast, but it is not slow (provided you
* program it correctly), and general enough. And its relative
* speed grows as the number of rules becomes larger.
*
* It seems that it represents the best middle point between
* speed and manageability both by human and by machine.
*
* It is especially useful for link sharing combined with QoS;
* pure RSVP doesn't need such a general approach and can use
* much simpler (and faster) schemes, sort of cls_rsvp.c.
*
* JHS: We should remove the CONFIG_NET_CLS_IND from here
* eventually when the meta match extension is made available
*
* nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/rtnetlink.h>
#include <linux/skbuff.h>
#include <net/netlink.h>
#include <net/act_api.h>
#include <net/pkt_cls.h>
//图形化理解参考参考TC流量控制实现分析(初步)*/ //详细理解也可以参考<<LINUX高级路由和流量控制>>
//tc_u_hnode里面的ht指向这里 tc filter u32过滤器的结构,起源结构在tcf_proto
/*一个tc_u_hnode上面可能包含多条的过滤信息,例如添加过滤器的时候可以过滤源 目的 IP port mask等,每个信息都存在于tc_u_common
的tc_u_knode数组ht[]中,然后这些多条一起添加到tc_u_hnode,参考u32_init。例如tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32 xxxx后,
继续添加tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32,这样添加好几条针对parent 1:0的过滤器tc_u_common*/
struct tc_u_knode
{
struct tc_u_knode *next;
u32 handle;
struct tc_u_hnode *ht_up;
struct tcf_exts exts;
#ifdef CONFIG_NET_CLS_IND
char indev[IFNAMSIZ];
#endif
u8 fshift;
struct tcf_result res; //u32过滤器在匹配SKB内容的时候,结果返回给该值
struct tc_u_hnode *ht_down;
#ifdef CONFIG_CLS_U32_PERF
struct tc_u32_pcnt *pf;
#endif
#ifdef CONFIG_CLS_U32_MARK
struct tc_u32_mark mark;
#endif
struct tc_u32_sel sel;
}; //该结构是加入到prio_sched_data中的filter_list链表中 每调用一次tc filter add就会创建一个tcf_proto结构,调用多个tc filter add的时候就创建多个tcf_proto结构,通过next连接
//图形化理解参考参考TC流量控制实现分析(初步)*/ //详细理解也可以参考<<LINUX高级路由和流量控制>>
//tcf_proto里面的root指向这里 tc filter u32过滤器的结构,起源结构在tcf_proto的root
struct tc_u_hnode //u32过滤器在u32_init中创建并初始化。 新建的所有tc_u_common都通过next添加到该过滤器跟表上
/*一个tc_u_hnode上面可能包含多条的过滤信息,例如添加过滤器的时候可以过滤源 目的 IP port mask等,每个信息都存在于tc_u_common
的tc_u_knode数组ht[]中,然后这些多条一起添加到tc_u_hnode,参考u32_init。例如tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32 xxxx后,
继续添加tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32,添加两个tc filter add就会创建两个tcf_proto过滤器结构,但是每条里面针对parent 1:0的过滤器tc_u_common*/
{
struct tc_u_hnode *next;//通过这个指向对应跟下面所有tc_u_common节点的最后一个tc_u_common节点,参考u32_init
u32 handle; //为过滤器自动分配的一个handle
u32 prio;//tc filter add dev eth0 protocol ip parent 22: prio 2为2
struct tc_u_common *tp_c; //指向最后创建的uc_u_common过滤器
int refcnt;
unsigned divisor;
struct tc_u_knode *ht[1];//这是每条过滤器中的多条过滤因子,如一条过滤器中可能包含多个ip mask port等,可以通过该结构组织
};
//图形化理解参考参考TC流量控制实现分析(初步)*/ //详细理解也可以参考<<LINUX高级路由和流量控制>>
//tcf_proto里面的data指向这里 tc filter u32过滤器的结构,起源结构在tcf_proto的data
////一个tc_u_hnode上面可能包含很多的过滤信息,例如添加过滤器的时候可以过滤源 目的 IP port mask等,每个信息都存在于tc_u_common,然后一起添加到tc_u_hnode,参考u32_init
/*一个tc_u_hnode上面可能包含多条的过滤信息,例如添加过滤器的时候可以过滤源 目的 IP port mask等,每个信息都存在于tc_u_common
的tc_u_knode数组ht[]中,然后这些多条一起添加到tc_u_hnode,参考u32_init。例如tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32 xxxx后,
继续添加tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32,这样添加好2条针对parent 1:0的过滤器tc_u_common*/
struct tc_u_common
{
struct tc_u_hnode *hlist;//通过这个指向tc_u_hnode跟
struct Qdisc *q;
int refcnt;
u32 hgenerator;
};
static const struct tcf_ext_map u32_ext_map = {
.action = TCA_U32_ACT,
.police = TCA_U32_POLICE
};
static __inline__ unsigned u32_hash_fold(__be32 key, struct tc_u32_sel *sel, u8 fshift)
{
unsigned h = ntohl(key & sel->hmask)>>fshift;
return h;
}
////U32分类函数,结果保存在tcf_result中。通过SKB中的内容,来匹配这个过滤器,结果返回给tcf_result,见tc_classify_compat
//匹配成功返回0,并把匹配到的过滤器所处的子分类信息节点存到res中
static int u32_classify(struct sk_buff *skb, struct tcf_proto *tp, struct tcf_result *res)
{
struct {
struct tc_u_knode *knode;
unsigned int off;
} stack[TC_U32_MAXDEPTH];
struct tc_u_hnode *ht = (struct tc_u_hnode*)tp->root;
unsigned int off = skb_network_offset(skb);
struct tc_u_knode *n;
int sdepth = 0;
int off2 = 0;
int sel = 0;
#ifdef CONFIG_CLS_U32_PERF
int j;
#endif
int i, r;
next_ht:
n = ht->ht[sel];
next_knode:
if (n) {
struct tc_u32_key *key = n->sel.keys;
#ifdef CONFIG_CLS_U32_PERF
n->pf->rcnt +=1;
j = 0;
#endif
#ifdef CONFIG_CLS_U32_MARK
if ((skb->mark & n->mark.mask) != n->mark.val) {
n = n->next;
goto next_knode;
} else {
n->mark.success++;
}
#endif
for (i = n->sel.nkeys; i>0; i--, key++) {
unsigned int toff;
__be32 *data, _data;
toff = off + key->off + (off2 & key->offmask);
data = skb_header_pointer(skb, toff, 4, &_data);
if (!data)
goto out;
if ((*data ^ key->val) & key->mask) {
n = n->next;
goto next_knode;
}
#ifdef CONFIG_CLS_U32_PERF
n->pf->kcnts[j] +=1;
j++;
#endif
}
if (n->ht_down == NULL) {
check_terminal:
if (n->sel.flags&TC_U32_TERMINAL) {
*res = n->res;
#ifdef CONFIG_NET_CLS_IND
if (!tcf_match_indev(skb, n->indev)) {
n = n->next;
goto next_knode;
}
#endif
#ifdef CONFIG_CLS_U32_PERF
n->pf->rhit +=1;
#endif
r = tcf_exts_exec(skb, &n->exts, res);
if (r < 0) {
n = n->next;
goto next_knode;
}
return r;
}
n = n->next;
goto next_knode;
}
/* PUSH */
if (sdepth >= TC_U32_MAXDEPTH)
goto deadloop;
stack[sdepth].knode = n;
stack[sdepth].off = off;
sdepth++;
ht = n->ht_down;
sel = 0;
if (ht->divisor) {
__be32 *data, _data;
data = skb_header_pointer(skb, off + n->sel.hoff, 4,
&_data);
if (!data)
goto out;
sel = ht->divisor & u32_hash_fold(*data, &n->sel,
n->fshift);
}
if (!(n->sel.flags&(TC_U32_VAROFFSET|TC_U32_OFFSET|TC_U32_EAT)))
goto next_ht;
if (n->sel.flags&(TC_U32_OFFSET|TC_U32_VAROFFSET)) {
off2 = n->sel.off + 3;
if (n->sel.flags & TC_U32_VAROFFSET) {
__be16 *data, _data;
data = skb_header_pointer(skb,
off + n->sel.offoff,
2, &_data);
if (!data)
goto out;
off2 += ntohs(n->sel.offmask & *data) >>
n->sel.offshift;
}
off2 &= ~3;
}
if (n->sel.flags&TC_U32_EAT) {
off += off2;
off2 = 0;
}
if (off < skb->len)
goto next_ht;
}
/* POP */
if (sdepth--) {
n = stack[sdepth].knode;
ht = n->ht_up;
off = stack[sdepth].off;
goto check_terminal;
}
out:
return -1;
deadloop:
if (net_ratelimit())
printk(KERN_WARNING "cls_u32: dead loop\n");
return -1;
}
static __inline__ struct tc_u_hnode *
u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
{
struct tc_u_hnode *ht;
for (ht = tp_c->hlist; ht; ht = ht->next)
if (ht->handle == handle)
break;
return ht;
}
static __inline__ struct tc_u_knode *
u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
{
unsigned sel;
struct tc_u_knode *n = NULL;
sel = TC_U32_HASH(handle);
if (sel > ht->divisor)
goto out;
for (n = ht->ht[sel]; n; n = n->next)
if (n->handle == handle)
break;
out:
return n;
}
//获取tcf_proto(tc filter add的时候创建一个该类型过滤器) //讲一个过滤器元素的句柄映射到一个内部过滤器标识符,实际上是过滤器实例指针,并将其返回
//tp为
static unsigned long u32_get(struct tcf_proto *tp, u32 handle)
{
struct tc_u_hnode *ht;
struct tc_u_common *tp_c = tp->data;
if (TC_U32_HTID(handle) == TC_U32_ROOT)
ht = tp->root;
else
ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
if (!ht)
return 0;
if (TC_U32_KEY(handle) == 0)
return (unsigned long)ht;
return (unsigned long)u32_lookup_key(ht, handle);
}
static void u32_put(struct tcf_proto *tp, unsigned long f)
{
}
static u32 gen_new_htid(struct tc_u_common *tp_c)
{
int i = 0x800;
do {
if (++tp_c->hgenerator == 0x7FF)
tp_c->hgenerator = 1;
} while (--i>0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20));
return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0;
}
// tc filter add dev eth0 protocol ip parent 22: prio 2 u32 match ip dst 4.3.2.1/32 flowid 22:4
static int u32_init(struct tcf_proto *tp)//tc_ctl_tclass调用
{
struct tc_u_hnode *root_ht;
struct tc_u_common *tp_c;
tp_c = tp->q->u32_node;
root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
if (root_ht == NULL)
return -ENOBUFS;
root_ht->divisor = 0;
root_ht->refcnt++;
root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000;
root_ht->prio = tp->prio;//tc filter add dev eth0 protocol ip parent 22: prio 2为2
if (tp_c == NULL) {
tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
if (tp_c == NULL) {
kfree(root_ht);
return -ENOBUFS;
}
tp_c->q = tp->q;
tp->q->u32_node = tp_c;
}
tp_c->refcnt++;
//通过这个把tc_u_common添加到跟tc_u_hnode的尾节点上
root_ht->next = tp_c->hlist;
tp_c->hlist = root_ht;
root_ht->tp_c = tp_c;
//
tp->root = root_ht;
tp->data = tp_c;
return 0;
}
static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n)
{
tcf_unbind_filter(tp, &n->res);
tcf_exts_destroy(tp, &n->exts);
if (n->ht_down)
n->ht_down->refcnt--;
#ifdef CONFIG_CLS_U32_PERF
kfree(n->pf);
#endif
kfree(n);
return 0;
}
static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode* key)
{
struct tc_u_knode **kp;
struct tc_u_hnode *ht = key->ht_up;
if (ht) {
for (kp = &ht->ht[TC_U32_HASH(key->handle)]; *kp; kp = &(*kp)->next) {
if (*kp == key) {
tcf_tree_lock(tp);
*kp = key->next;
tcf_tree_unlock(tp);
u32_destroy_key(tp, key);
return 0;
}
}
}
WARN_ON(1);
return 0;
}
static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
{
struct tc_u_knode *n;
unsigned h;
for (h=0; h<=ht->divisor; h++) {
while ((n = ht->ht[h]) != NULL) {
ht->ht[h] = n->next;
u32_destroy_key(tp, n);
}
}
}
static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode **hn;
WARN_ON(ht->refcnt);
u32_clear_hnode(tp, ht);
for (hn = &tp_c->hlist; *hn; hn = &(*hn)->next) {
if (*hn == ht) {
*hn = ht->next;
kfree(ht);
return 0;
}
}
WARN_ON(1);
return -ENOENT;
}
static void u32_destroy(struct tcf_proto *tp)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode *root_ht = tp->root;
WARN_ON(root_ht == NULL);
if (root_ht && --root_ht->refcnt == 0)
u32_destroy_hnode(tp, root_ht);
if (--tp_c->refcnt == 0) {
struct tc_u_hnode *ht;
tp->q->u32_node = NULL;
for (ht = tp_c->hlist; ht; ht = ht->next) {
ht->refcnt--;
u32_clear_hnode(tp, ht);
}
while ((ht = tp_c->hlist) != NULL) {
tp_c->hlist = ht->next;
WARN_ON(ht->refcnt != 0);
kfree(ht);
}
kfree(tp_c);
}
tp->data = NULL;
}
static int u32_delete(struct tcf_proto *tp, unsigned long arg)
{
struct tc_u_hnode *ht = (struct tc_u_hnode*)arg;
if (ht == NULL)
return 0;
if (TC_U32_KEY(ht->handle))
return u32_delete_key(tp, (struct tc_u_knode*)ht);
if (tp->root == ht)
return -EINVAL;
if (ht->refcnt == 1) {
ht->refcnt--;
u32_destroy_hnode(tp, ht);
} else {
return -EBUSY;
}
return 0;
}
static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle)
{
struct tc_u_knode *n;
unsigned i = 0x7FF;
for (n=ht->ht[TC_U32_HASH(handle)]; n; n = n->next)
if (i < TC_U32_NODE(n->handle))
i = TC_U32_NODE(n->handle);
i++;
return handle|(i>0xFFF ? 0xFFF : i);
}
static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
[TCA_U32_CLASSID] = { .type = NLA_U32 },
[TCA_U32_HASH] = { .type = NLA_U32 },
[TCA_U32_LINK] = { .type = NLA_U32 },
[TCA_U32_DIVISOR] = { .type = NLA_U32 },
[TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
[TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
[TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
};
static int u32_set_parms(struct tcf_proto *tp, unsigned long base,
struct tc_u_hnode *ht,
struct tc_u_knode *n, struct nlattr **tb,
struct nlattr *est)
{
int err;
struct tcf_exts e;
err = tcf_exts_validate(tp, tb, est, &e, &u32_ext_map);
if (err < 0)
return err;
err = -EINVAL;
if (tb[TCA_U32_LINK]) {
u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
struct tc_u_hnode *ht_down = NULL, *ht_old;
if (TC_U32_KEY(handle))
goto errout;
if (handle) {
ht_down = u32_lookup_ht(ht->tp_c, handle);
if (ht_down == NULL)
goto errout;
ht_down->refcnt++;
}
tcf_tree_lock(tp);
ht_old = n->ht_down;
n->ht_down = ht_down;
tcf_tree_unlock(tp);
if (ht_old)
ht_old->refcnt--;
}
if (tb[TCA_U32_CLASSID]) {
//tc filter add dev eth0 protocol ip parent 22: prio 2 u32 match ip dst 4.3.2.1/32 flowid 22:4
n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); //把应用层过来的flowid 22:4中的flowid赋值给res
tcf_bind_filter(tp, &n->res, base);
}
#ifdef CONFIG_NET_CLS_IND
if (tb[TCA_U32_INDEV]) {
err = tcf_change_indev(tp, n->indev, tb[TCA_U32_INDEV]);
if (err < 0)
goto errout;
}
#endif
tcf_exts_change(tp, &n->exts, &e);
return 0;
errout:
tcf_exts_destroy(tp, &e);
return err;
}
//tc filter add dev eth0 protocol ip parent 22: prio 2 u32 match ip dst 4.3.2.1/32 flowid 22:4
////tp为新创建或者需要修改的tc filter过滤器tcf_proto, base为flowid 22:4对应的htb_class结构,见htb_get. tca为应用层下来的参数信息,handle为内核为该tc filter自动生成的handle
static int u32_change(struct tcf_proto *tp, unsigned long base, u32 handle,
struct nlattr **tca,
unsigned long *arg)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode *ht;
struct tc_u_knode *n;
struct tc_u32_sel *s;
struct nlattr *opt = tca[TCA_OPTIONS];
struct nlattr *tb[TCA_U32_MAX + 1];
u32 htid;
int err;
if (opt == NULL)
return handle ? -EINVAL : 0;
err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy);
if (err < 0)
return err;
if ((n = (struct tc_u_knode*)*arg) != NULL) {
if (TC_U32_KEY(n->handle) == 0)
return -EINVAL;
return u32_set_parms(tp, base, n->ht_up, n, tb, tca[TCA_RATE]);
}
if (tb[TCA_U32_DIVISOR]) {
unsigned divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
if (--divisor > 0x100)
return -EINVAL;
if (TC_U32_KEY(handle))
return -EINVAL;
if (handle == 0) {
handle = gen_new_htid(tp->data);
if (handle == 0)
return -ENOMEM;
}
ht = kzalloc(sizeof(*ht) + divisor*sizeof(void*), GFP_KERNEL);
if (ht == NULL)
return -ENOBUFS;
ht->tp_c = tp_c;
ht->refcnt = 1;
ht->divisor = divisor;
ht->handle = handle;
ht->prio = tp->prio;
ht->next = tp_c->hlist;
tp_c->hlist = ht;
*arg = (unsigned long)ht;
return 0;
}
if (tb[TCA_U32_HASH]) {
htid = nla_get_u32(tb[TCA_U32_HASH]);
if (TC_U32_HTID(htid) == TC_U32_ROOT) {
ht = tp->root;
htid = ht->handle;
} else {
ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
if (ht == NULL)
return -EINVAL;
}
} else {
ht = tp->root;
htid = ht->handle;
}
if (ht->divisor < TC_U32_HASH(htid))
return -EINVAL;
if (handle) {
if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
return -EINVAL;
handle = htid | TC_U32_NODE(handle);
} else
handle = gen_new_kid(ht, htid);
if (tb[TCA_U32_SEL] == NULL)
return -EINVAL;
s = nla_data(tb[TCA_U32_SEL]);
n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL);
if (n == NULL)
return -ENOBUFS;
#ifdef CONFIG_CLS_U32_PERF
n->pf = kzalloc(sizeof(struct tc_u32_pcnt) + s->nkeys*sizeof(u64), GFP_KERNEL);
if (n->pf == NULL) {
kfree(n);
return -ENOBUFS;
}
#endif
memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
n->ht_up = ht;
n->handle = handle;
n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
#ifdef CONFIG_CLS_U32_MARK
if (tb[TCA_U32_MARK]) {
struct tc_u32_mark *mark;
mark = nla_data(tb[TCA_U32_MARK]);
memcpy(&n->mark, mark, sizeof(struct tc_u32_mark));
n->mark.success = 0;
}
#endif
err = u32_set_parms(tp, base, ht, n, tb, tca[TCA_RATE]);
if (err == 0) {
struct tc_u_knode **ins;
for (ins = &ht->ht[TC_U32_HASH(handle)]; *ins; ins = &(*ins)->next)
if (TC_U32_NODE(handle) < TC_U32_NODE((*ins)->handle))
break;
n->next = *ins;
tcf_tree_lock(tp);
*ins = n;
tcf_tree_unlock(tp);
*arg = (unsigned long)n;
return 0;
}
#ifdef CONFIG_CLS_U32_PERF
kfree(n->pf);
#endif
kfree(n);
return err;
}
static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
{
struct tc_u_common *tp_c = tp->data;
struct tc_u_hnode *ht;
struct tc_u_knode *n;
unsigned h;
if (arg->stop)
return;
for (ht = tp_c->hlist; ht; ht = ht->next) {
if (ht->prio != tp->prio)
continue;
if (arg->count >= arg->skip) {
if (arg->fn(tp, (unsigned long)ht, arg) < 0) {
arg->stop = 1;
return;
}
}
arg->count++;
for (h = 0; h <= ht->divisor; h++) {
for (n = ht->ht[h]; n; n = n->next) {
if (arg->count < arg->skip) {
arg->count++;
continue;
}
if (arg->fn(tp, (unsigned long)n, arg) < 0) {
arg->stop = 1;
return;
}
arg->count++;
}
}
}
}
static int u32_dump(struct tcf_proto *tp, unsigned long fh,
struct sk_buff *skb, struct tcmsg *t)
{
struct tc_u_knode *n = (struct tc_u_knode*)fh;
struct nlattr *nest;
if (n == NULL)
return skb->len;
t->tcm_handle = n->handle;
nest = nla_nest_start(skb, TCA_OPTIONS);
if (nest == NULL)
goto nla_put_failure;
if (TC_U32_KEY(n->handle) == 0) {
struct tc_u_hnode *ht = (struct tc_u_hnode*)fh;
u32 divisor = ht->divisor+1;
NLA_PUT_U32(skb, TCA_U32_DIVISOR, divisor);
} else {
NLA_PUT(skb, TCA_U32_SEL,
sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
&n->sel);
if (n->ht_up) {
u32 htid = n->handle & 0xFFFFF000;
NLA_PUT_U32(skb, TCA_U32_HASH, htid);
}
if (n->res.classid)
NLA_PUT_U32(skb, TCA_U32_CLASSID, n->res.classid);
if (n->ht_down)
NLA_PUT_U32(skb, TCA_U32_LINK, n->ht_down->handle);
#ifdef CONFIG_CLS_U32_MARK
if (n->mark.val || n->mark.mask)
NLA_PUT(skb, TCA_U32_MARK, sizeof(n->mark), &n->mark);
#endif
if (tcf_exts_dump(skb, &n->exts, &u32_ext_map) < 0)
goto nla_put_failure;
#ifdef CONFIG_NET_CLS_IND
if(strlen(n->indev))
NLA_PUT_STRING(skb, TCA_U32_INDEV, n->indev);
#endif
#ifdef CONFIG_CLS_U32_PERF
NLA_PUT(skb, TCA_U32_PCNT,
sizeof(struct tc_u32_pcnt) + n->sel.nkeys*sizeof(u64),
n->pf);
#endif
}
nla_nest_end(skb, nest);
if (TC_U32_KEY(n->handle))
if (tcf_exts_dump_stats(skb, &n->exts, &u32_ext_map) < 0)
goto nla_put_failure;
return skb->len;
nla_put_failure:
nla_nest_cancel(skb, nest);
return -1;
}
//图形化理解参考参考TC流量控制实现分析(初步)*/ //详细理解也可以参考<<LINUX高级路由和流量控制>>
//tcf_proto里面的ops指向这里 tc filter u32过滤器的结构,起源结构在tcf_proto
//主要有cls_u32_ops cls_basic_ops cls_cgroup_ops cls_flow_ops cls_route4_ops RSVP_OPS
static struct tcf_proto_ops cls_u32_ops ;//__read_mostly = {
.kind = "u32",
.classify = u32_classify,
.init = u32_init, //tc_ctl_tclass调用
.destroy = u32_destroy,
//讲一个过滤器元素的句柄映射到一个内部过滤器标识符,实际上是过滤器实例指针,并将其返回
.get = u32_get, //通过tcmsg -> tcm_handle 就能找到对应的tcf_proto过滤器的跟信息tc_u_hnode
.put = u32_put,
.change = u32_change,
.delete = u32_delete,
.walk = u32_walk,
.dump = u32_dump,
.owner = THIS_MODULE,
};
static int __init init_u32(void)
{
pr_info("u32 classifier\n");
#ifdef CONFIG_CLS_U32_PERF
pr_info(" Performance counters on\n");
#endif
#ifdef CONFIG_NET_CLS_IND
pr_info(" input device check on\n");
#endif
#ifdef CONFIG_NET_CLS_ACT
pr_info(" Actions configured\n");
#endif
return register_tcf_proto_ops(&cls_u32_ops);
}
static void __exit exit_u32(void)
{
unregister_tcf_proto_ops(&cls_u32_ops);
}
module_init(init_u32)
module_exit(exit_u32)
MODULE_LICENSE("GPL");