forked from LAION-AI/Open-Assistant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwork.py
301 lines (259 loc) · 11.1 KB
/
work.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import re
import threading
from concurrent import futures
import interface
import requests
import sseclient
import transformers
import utils
import websocket
from loguru import logger
from oasst_shared.schemas import inference
from settings import settings
tokenizer_lock = threading.Lock()
def truncate_prompt(
tokenizer: transformers.PreTrainedTokenizer,
worker_config: inference.WorkerConfig,
parameters: interface.GenerateStreamParameters,
prompt: str,
):
with tokenizer_lock:
ids = tokenizer.encode(prompt)
max_input_length = worker_config.model_config.max_input_length
max_total_tokens = worker_config.model_config.max_total_length
if len(ids) > max_input_length:
logger.warning(f"Prompt too long, left-truncating to {max_input_length} tokens")
ids = ids[-(max_input_length - 1) :]
with tokenizer_lock:
prompt = tokenizer.decode(ids)
input_length = len(ids)
spare = max_total_tokens - input_length - 1
if not parameters.max_new_tokens:
parameters.max_new_tokens = spare
elif parameters.max_new_tokens > spare:
logger.warning(f"Max new tokens too high, reducing to {spare}")
parameters.max_new_tokens = spare
return prompt
V2_ASST_PREFIX = "<|assistant|>"
V2_PROMPTER_PREFIX = "<|prompter|>"
def make_prompt_and_parameters(
tokenizer: transformers.PreTrainedTokenizer,
work_request: inference.WorkRequest,
) -> tuple[str, interface.GenerateStreamParameters]:
if settings.oa_protocol_version != "v2":
raise RuntimeError(f"Unsupported oa protocol version: {settings.oa_protocol_version}")
eos_token = ""
if hasattr(tokenizer, "eos_token"):
eos_token = tokenizer.eos_token
def _prepare_message(message: inference.MessageRead) -> str:
prefix = V2_ASST_PREFIX if message.is_assistant else V2_PROMPTER_PREFIX
return prefix + message.content + eos_token
# construct prompt
messages = [_prepare_message(message) for message in work_request.thread.messages]
prompt = "".join(messages) + V2_ASST_PREFIX
parameters = interface.GenerateStreamParameters.from_work_parameters(work_request.parameters)
if settings.use_stop_sequences:
parameters.stop = [
V2_PROMPTER_PREFIX,
V2_ASST_PREFIX,
]
if eos_token:
parameters.stop.append(eos_token)
else:
parameters.stop = []
return prompt, parameters
def prepare_safe_prompt(prompt: str, label: str, rots: str):
pre_prompt = f"Answer the following request with {label} as responsible chatbot that believes that {rots}: "
input_list = prompt.split(V2_PROMPTER_PREFIX)
input_list[-1] = pre_prompt + input_list[-1]
return V2_PROMPTER_PREFIX.join(input_list)
def get_safety_opinion(prompt: str, safety_opinion: str, safety_level: int):
safety_opinion = re.sub(r"<pad>|</s>", "", safety_opinion).split("<sep>")
label, rots = safety_opinion[0], "and".join([x.strip(".") for x in safety_opinion[1:]])
label = label.replace("<pad>", "").strip()
if "caution" in label and safety_level > 1:
return prepare_safe_prompt(prompt, label, rots)
elif "intervention" in label and safety_level > 0:
return prepare_safe_prompt(prompt, label, rots)
else:
return prompt
def handle_work_request(
ws: websocket.WebSocket,
tokenizer: transformers.PreTrainedTokenizer,
work_request: inference.WorkRequest,
worker_config: inference.WorkerConfig,
):
prompt, parameters = make_prompt_and_parameters(tokenizer=tokenizer, work_request=work_request)
logger.debug(f"Prompt: {prompt}")
model_config = worker_config.model_config
# Only send safety request if work request safety level is not 0
if settings.enable_safety and work_request.safety_parameters.level:
safety_request = inference.SafetyRequest(inputs=prompt, parameters=work_request.safety_parameters)
safety_response = get_safety_server_response(safety_request)
prompt = get_safety_opinion(prompt, safety_response.outputs, work_request.safety_parameters.level)
logger.debug(f"Safe prompt: {prompt}")
stream_response = None
token_buffer = utils.TokenBuffer(stop_sequences=parameters.stop)
if model_config.is_lorem:
stream_events = utils.lorem_events(parameters.seed)
else:
prompt = truncate_prompt(tokenizer, worker_config, parameters, prompt)
stream_request = interface.GenerateStreamRequest(
inputs=prompt,
parameters=parameters,
)
stream_events = get_inference_server_stream_events(stream_request)
generated_ids = []
decoded_text = ""
for stream_response in stream_events:
if stream_response.is_error:
logger.error(f"Error from inference server: {stream_response.error}")
utils.send_response(
ws,
inference.ErrorResponse(
request_id=work_request.id,
error=stream_response.error,
metrics=inference.WorkerMetricsInfo(),
),
)
raise RuntimeError(f"Error from inference server: {stream_response.error}")
token = stream_response.token
if model_config.is_llama:
generated_ids.append(token.id)
try:
with tokenizer_lock:
text = tokenizer.decode(generated_ids, skip_special_tokens=True)
new_text = text[len(decoded_text) :]
if not decoded_text:
new_text = new_text.lstrip()
except Exception:
text = decoded_text
new_text = ""
token.text = new_text
decoded_text = text
for send_token in token_buffer.add(token):
utils.send_response(ws, send_token.to_token_response(request_id=work_request.id))
if stream_response is None:
logger.error("No stream response received")
raise RuntimeError("No stream response received")
for send_token in token_buffer.finish(reason=stream_response.details.finish_reason):
utils.send_response(
ws,
send_token.to_token_response(request_id=work_request.id),
)
if model_config.is_llama:
stream_response.generated_text = stream_response.generated_text.strip()
logger.info(f"Done. {stream_response=}")
utils.send_response(
ws,
inference.GeneratedTextResponse(
request_id=work_request.id,
text=stream_response.generated_text,
finish_reason=stream_response.details.finish_reason,
metrics=inference.WorkerMetricsInfo(),
),
)
logger.debug("Work complete. Waiting for more work...")
def get_safety_server_response(request: inference.SafetyRequest) -> inference.SafetyResponse:
http = utils.HttpClient(base_url=settings.safety_server_url)
response = http.post("/safety", json=request.dict())
try:
response.raise_for_status()
except requests.HTTPError:
logger.exception("Failed to get response from safety server")
logger.error(f"Response: {response.text}")
raise
return inference.SafetyResponse(**response.json())
def get_inference_server_stream_events(request: interface.GenerateStreamRequest):
http = utils.HttpClient(
base_url=settings.inference_server_url,
basic_auth_username=settings.basic_auth_username,
basic_auth_password=settings.basic_auth_password,
)
response = http.post(
"/generate_stream",
json=request.dict(),
stream=True,
headers={"Accept": "text/event-stream"},
)
try:
response.raise_for_status()
except requests.HTTPError:
logger.exception("Failed to get response from inference server")
logger.error(f"Response: {response.text}")
raise
client = sseclient.SSEClient(response)
for event in client.events():
if event.event == "error":
logger.error(f"Error from inference server: {event.data}")
yield interface.GenerateStreamResponse(error=event.data)
raise RuntimeError(f"Error from inference server: {event.data}")
if event.event == "ping":
continue
stream_response = interface.GenerateStreamResponse.parse_raw(event.data)
yield stream_response
def perform_oom_test(tokenizer: transformers.PreTrainedTokenizer):
logger.warning("Performing OOM test")
prompt = ("This is a test prompt. " * 10000).strip()
parameters = interface.GenerateStreamParameters(
max_new_tokens=4,
temperature=1.5,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
stop=[],
)
class OOMError(Exception):
pass
if settings.oom_test_max_length is None:
try:
for length in range(256, 2**15, 256):
prompt_ids = tokenizer.encode(prompt, max_length=length - 4, truncation=True)
short_prompt = tokenizer.decode(prompt_ids)
stream_request = interface.GenerateStreamRequest(
inputs=short_prompt,
parameters=parameters,
)
stream_events = get_inference_server_stream_events(stream_request)
for stream_response in stream_events:
if stream_response.is_error:
logger.error(f"Error from inference server: {stream_response.error}")
raise OOMError()
except OOMError:
length = length - 256
logger.warning(f"Max length: {length}")
else:
length = settings.oom_test_max_length
with futures.ThreadPoolExecutor() as executor:
try:
for batch_size in range(1, 32, 1):
prompt_ids = tokenizer.encode(prompt, max_length=length - 4, truncation=True)
short_prompt = tokenizer.decode(prompt_ids)
stream_request = interface.GenerateStreamRequest(
inputs=short_prompt,
parameters=parameters,
)
ftrs: list[futures.Future] = []
try:
for _ in range(batch_size):
stream_events = get_inference_server_stream_events(stream_request)
ftrs.append(executor.submit(list, stream_events))
for ftr in ftrs:
for stream_response in ftr.result():
if stream_response.is_error:
logger.error(f"Error from inference server: {stream_response.error}")
raise OOMError()
except Exception:
logger.exception("OOM")
try:
for ftr in ftrs:
ftr.cancel()
except Exception:
pass
raise OOMError()
except OOMError:
batch_size = batch_size - 1
logger.warning(f"Batch size: {batch_size}")
logger.warning("OOM test complete")
logger.warning(f"Max length: {length}")
logger.warning(f"Batch size: {batch_size}")