forked from LAION-AI/Open-Assistant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmt_note_generation.py
121 lines (101 loc) · 3.8 KB
/
mt_note_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright 2023 The OpenAssistant Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MT Note Generation is a set of synthetic dialogues between Assistant and
User where the user asks the assistant to generate a clinical note for a patient persona.
"""
import json
from typing import Dict, List, Tuple
import datasets
from .hub import OpenAssistantConfig, features
_CITATION = """\
@misc{transcribed medical transcription sample reports and examples, title={Welcome to MTSamples},
url={https://mtsamples.com/},
journal={Transcribed Medical Transcription Sample Reports and Examples}}
"""
_DATASETNAME = "mt_note_generation"
_DISPLAYNAME = "MT Samples Note Generation"
_DESCRIPTION = """\
A dataset of instructions for generating clinical notes from MT samples.
"""
_HOMEPAGE = ""
_LICENSE = "mit"
_URLS = {
_DATASETNAME: {
"train": "./data/mt_note_generation_train.jsonl",
"test": "./data/mt_note_generation_test.jsonl",
"validation": "./data/mt_note_generation_validation.jsonl",
}
}
_SUPPORTED_TASKS = ["dialogue-modeling"]
_VERSION = "1.0.0"
class MTNoteGenerationDataset(datasets.GeneratorBasedBuilder):
"""A set of dialogues synthesized from the MT Samples dataset."""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = [
OpenAssistantConfig(
name=f"{_DATASETNAME}_dialogue_modeling",
version=VERSION,
description=f"OpenAssistant dataset config for {_DATASETNAME}",
schema="dialogue_modeling",
subset_id=_DATASETNAME,
)
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_dialogue_modeling"
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir,
"split": "validation",
},
),
]
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if self.config.schema == "dialogue_modeling":
key = 0
with open(filepath[split], "r", encoding="utf8") as data:
while True:
line = data.readline()
if not line:
return
yield key, json.loads(line)
key += 1