193
193
< div class ="pytorch-left-menu-search ">
194
194
195
195
< div class ="version ">
196
- < a href ='https://pytorch.org/docs/versions.html '> master (1.10.0a0+gitaab14ff ) ▼</ a >
196
+ < a href ='https://pytorch.org/docs/versions.html '> master (1.10.0a0+gitc99e75c ) ▼</ a >
197
197
</ div >
198
198
199
199
@@ -688,7 +688,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
688
688
< span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> )</ span > < span class ="ow "> in</ span > < span class ="n "> _storage_classes</ span >
689
689
690
690
691
- < div class =" viewcode-block " id =" set_default_tensor_type " > < a class =" viewcode-back " href =" ../generated/torch.set_default_tensor_type.html#torch.set_default_tensor_type " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
691
+ < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
692
692
< span class ="sa "> r</ span > < span class ="sd "> """Sets the default ``torch.Tensor`` type to floating point tensor type</ span >
693
693
< span class ="sd "> ``t``. This type will also be used as default floating point type for</ span >
694
694
< span class ="sd "> type inference in :func:`torch.tensor`.</ span >
@@ -709,10 +709,10 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
709
709
< span class ="sd "> """</ span >
710
710
< span class ="k "> if</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ,</ span > < span class ="n "> _string_classes</ span > < span class ="p "> ):</ span >
711
711
< span class ="n "> t</ span > < span class ="o "> =</ span > < span class ="n "> _import_dotted_name</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
712
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span > </ div >
712
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
713
713
714
714
715
- < div class =" viewcode-block " id =" set_default_dtype " > < a class =" viewcode-back " href =" ../generated/torch.set_default_dtype.html#torch.set_default_dtype " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
715
+ < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
716
716
< span class ="sa "> r</ span > < span class ="sd "> """</ span >
717
717
718
718
< span class ="sd "> Sets the default floating point dtype to :attr:`d`. Supports torch.float32</ span >
@@ -755,9 +755,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
755
755
< span class ="sd "> torch.complex128</ span >
756
756
757
757
< span class ="sd "> """</ span >
758
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span > </ div >
758
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span >
759
759
760
- < span class ="k "> def</ span > < span class ="nf "> use_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> ):</ span >
760
+ < div class =" viewcode-block " id =" use_deterministic_algorithms " > < a class =" viewcode-back " href =" ../generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> use_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> ):</ span >
761
761
< span class ="sa "> r</ span > < span class ="sd "> """ Sets whether PyTorch operations must use "deterministic"</ span >
762
762
< span class ="sd "> algorithms. That is, algorithms which, given the same input, and when</ span >
763
763
< span class ="sd "> run on the same software and hardware, always produce the same output.</ span >
@@ -872,15 +872,15 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
872
872
< span class ="sd "> ...</ span >
873
873
< span class ="sd "> RuntimeError: index_add_cuda_ does not have a deterministic implementation...</ span >
874
874
< span class ="sd "> """</ span >
875
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> )</ span >
875
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> )</ span > </ div >
876
876
877
- < div class =" viewcode-block " id =" are_deterministic_algorithms_enabled " > < a class =" viewcode-back " href =" ../generated/torch.are_deterministic_algorithms_enabled.html#torch.are_deterministic_algorithms_enabled " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> are_deterministic_algorithms_enabled</ span > < span class ="p "> ():</ span >
877
+ < span class ="k "> def</ span > < span class ="nf "> are_deterministic_algorithms_enabled</ span > < span class ="p "> ():</ span >
878
878
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if the global deterministic flag is turned on. Refer to</ span >
879
879
< span class ="sd "> :func:`torch.use_deterministic_algorithms` documentation for more details.</ span >
880
880
< span class ="sd "> """</ span >
881
- < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _get_deterministic_algorithms</ span > < span class ="p "> ()</ span > </ div >
881
+ < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _get_deterministic_algorithms</ span > < span class ="p "> ()</ span >
882
882
883
- < div class =" viewcode-block " id =" set_warn_always " > < a class =" viewcode-back " href =" ../generated/torch.set_warn_always.html#torch.set_warn_always " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_warn_always</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> ):</ span >
883
+ < span class ="k "> def</ span > < span class ="nf "> set_warn_always</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> ):</ span >
884
884
< span class ="sa "> r</ span > < span class ="sd "> """When this flag is False (default) then some PyTorch warnings may only</ span >
885
885
< span class ="sd "> appear once per process. This helps avoid excessive warning information.</ span >
886
886
< span class ="sd "> Setting it to True causes these warnings to always appear, which may be</ span >
@@ -890,7 +890,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
890
890
< span class ="sd "> b (:class:`bool`): If True, force warnings to always be emitted</ span >
891
891
< span class ="sd "> If False, set to the default behaviour</ span >
892
892
< span class ="sd "> """</ span >
893
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_warnAlways</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> )</ span > </ div >
893
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_warnAlways</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> )</ span >
894
894
895
895
< span class ="k "> def</ span > < span class ="nf "> is_warn_always_enabled</ span > < span class ="p "> ():</ span >
896
896
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if the global warn_always flag is turned on. Refer to</ span >
@@ -1051,14 +1051,14 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
1051
1051
< span class ="c1 "> ################################################################################</ span >
1052
1052
1053
1053
< span class ="c1 "> # needs to be before the submodule imports to avoid circular dependencies</ span >
1054
- < div class =" viewcode-block " id =" _assert " > < a class =" viewcode-back " href =" ../generated/torch._assert.html#torch._assert " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> _assert</ span > < span class ="p "> (</ span > < span class ="n "> condition</ span > < span class ="p "> ,</ span > < span class ="n "> message</ span > < span class ="p "> ):</ span >
1054
+ < span class ="k "> def</ span > < span class ="nf "> _assert</ span > < span class ="p "> (</ span > < span class ="n "> condition</ span > < span class ="p "> ,</ span > < span class ="n "> message</ span > < span class ="p "> ):</ span >
1055
1055
< span class ="sa "> r</ span > < span class ="sd "> """A wrapper around Python's assert which is symbolically traceable.</ span >
1056
1056
< span class ="sd "> """</ span >
1057
1057
< span class ="kn "> from</ span > < span class ="nn "> .overrides</ span > < span class ="kn "> import</ span > < span class ="n "> has_torch_function</ span > < span class ="p "> ,</ span > < span class ="n "> handle_torch_function</ span >
1058
1058
1059
1059
< span class ="k "> if</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> condition</ span > < span class ="p "> )</ span > < span class ="ow "> is</ span > < span class ="ow "> not</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> Tensor</ span > < span class ="ow "> and</ span > < span class ="n "> has_torch_function</ span > < span class ="p "> ((</ span > < span class ="n "> condition</ span > < span class ="p "> ,)):</ span >
1060
1060
< span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> _assert</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="n "> condition</ span > < span class ="p "> ,),</ span > < span class ="n "> condition</ span > < span class ="p "> ,</ span > < span class ="n "> message</ span > < span class ="p "> )</ span >
1061
- < span class ="k "> assert</ span > < span class ="n "> condition</ span > < span class ="p "> ,</ span > < span class ="n "> message</ span > </ div >
1061
+ < span class ="k "> assert</ span > < span class ="n "> condition</ span > < span class ="p "> ,</ span > < span class ="n "> message</ span >
1062
1062
1063
1063
< span class ="c1 "> ################################################################################</ span >
1064
1064
< span class ="c1 "> # Import most common subpackages</ span >
@@ -1115,9 +1115,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
1115
1115
< span class ="k "> del</ span > < span class ="n "> _torch_docs</ span > < span class ="p "> ,</ span > < span class ="n "> _tensor_docs</ span > < span class ="p "> ,</ span > < span class ="n "> _storage_docs</ span >
1116
1116
1117
1117
1118
- < span class ="k "> def</ span > < span class ="nf "> compiled_with_cxx11_abi</ span > < span class ="p "> ():</ span >
1118
+ < div class =" viewcode-block " id =" compiled_with_cxx11_abi " > < a class =" viewcode-back " href =" ../generated/torch.compiled_with_cxx11_abi.html#torch.compiled_with_cxx11_abi " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> compiled_with_cxx11_abi</ span > < span class ="p "> ():</ span >
1119
1119
< span class ="sa "> r</ span > < span class ="sd "> """Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""</ span >
1120
- < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _GLIBCXX_USE_CXX11_ABI</ span >
1120
+ < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _GLIBCXX_USE_CXX11_ABI</ span > </ div >
1121
1121
1122
1122
1123
1123
< span class ="c1 "> # Import the ops "namespace"</ span >
0 commit comments