217
217
< div class ="pytorch-left-menu-search ">
218
218
219
219
< div class ="version ">
220
- < a href ='https://pytorch.org/docs/versions.html '> master (1.12.0a0+git48ea440 ) ▼</ a >
220
+ < a href ='https://pytorch.org/docs/versions.html '> master (1.12.0a0+gitbcee215 ) ▼</ a >
221
221
</ div >
222
222
223
223
@@ -519,7 +519,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
519
519
< span class ="c1 "> # doesn't work because of</ span >
520
520
< span class ="c1 "> # https://github.com/pytorch/pytorch/issues/47442</ span >
521
521
< span class ="c1 "> # Update the test in test_serialization if you remove 'meta' from here</ span >
522
- < span class ="k "> if</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> is_sparse</ span > < span class ="ow "> or</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> device</ span > < span class ="o "> .</ span > < span class ="n "> type</ span > < span class ="ow "> in</ span > < span class ="p "> [</ span > < span class ="s1 "> 'lazy'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'xla'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'mlc '</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'ort'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'meta'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'hpu'</ span > < span class ="p "> ]</ span > < span class ="ow "> or</ span > \
522
+ < span class ="k "> if</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> is_sparse</ span > < span class ="ow "> or</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> device</ span > < span class ="o "> .</ span > < span class ="n "> type</ span > < span class ="ow "> in</ span > < span class ="p "> [</ span > < span class ="s1 "> 'lazy'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'xla'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'mps '</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'ort'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'meta'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'hpu'</ span > < span class ="p "> ]</ span > < span class ="ow "> or</ span > \
523
523
< span class ="p "> (</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span > < span class ="ow "> is</ span > < span class ="ow "> not</ span > < span class ="n "> Tensor</ span > < span class ="ow "> and</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> data_ptr</ span > < span class ="p "> ()</ span > < span class ="o "> ==</ span > < span class ="mi "> 0</ span > < span class ="p "> ):</ span >
524
524
< span class ="n "> new_tensor</ span > < span class ="o "> =</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> clone</ span > < span class ="p "> ()</ span >
525
525
< span class ="k "> if</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> new_tensor</ span > < span class ="p "> )</ span > < span class ="ow "> is</ span > < span class ="ow "> not</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
@@ -635,7 +635,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
635
635
< span class ="c1 "> # See Note [Don't serialize hooks]</ span >
636
636
< span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> utils</ span > < span class ="o "> .</ span > < span class ="n "> hooks</ span > < span class ="o "> .</ span > < span class ="n "> warn_if_has_hooks</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span >
637
637
< span class ="n "> backward_hooks</ span > < span class ="p "> :</ span > < span class ="n "> Dict</ span > < span class ="p "> [</ span > < span class ="n "> Any</ span > < span class ="p "> ,</ span > < span class ="n "> Any</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="n "> OrderedDict</ span > < span class ="p "> ()</ span >
638
- < span class ="c1 "> # Note: Numpy array is chosen to be the rebuild component for XLA, ORT, MLC Tensors.</ span >
638
+ < span class ="c1 "> # Note: Numpy array is chosen to be the rebuild component for XLA, ORT Tensors.</ span >
639
639
< span class ="c1 "> # We considered a few options:</ span >
640
640
< span class ="c1 "> # 1. CPU tensor can't be used here.</ span >
641
641
< span class ="c1 "> # Otherwise in torch.load CPU storage is reconstructed with randomly</ span >
@@ -645,7 +645,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
645
645
< span class ="c1 "> # 2. Python list is not a good fit due to performance reason.</ span >
646
646
< span class ="c1 "> # `tolist()` converts every single element in the tensor into python objects</ span >
647
647
< span class ="c1 "> # and serialize them one by one.</ span >
648
- < span class ="k "> if</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> device</ span > < span class ="o "> .</ span > < span class ="n "> type</ span > < span class ="ow "> in</ span > < span class ="p "> [</ span > < span class ="s1 "> 'xla'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'ort'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'mlc '</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'hpu'</ span > < span class ="p "> ]:</ span >
648
+ < span class ="k "> if</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> device</ span > < span class ="o "> .</ span > < span class ="n "> type</ span > < span class ="ow "> in</ span > < span class ="p "> [</ span > < span class ="s1 "> 'xla'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'ort'</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'mps '</ span > < span class ="p "> ,</ span > < span class ="s1 "> 'hpu'</ span > < span class ="p "> ]:</ span >
649
649
< span class ="k "> return</ span > < span class ="p "> (</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _utils</ span > < span class ="o "> .</ span > < span class ="n "> _rebuild_device_tensor_from_numpy</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> cpu</ span > < span class ="p "> ()</ span > < span class ="o "> .</ span > < span class ="n "> numpy</ span > < span class ="p "> (),</ span >
650
650
< span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> dtype</ span > < span class ="p "> ,</ span >
651
651
< span class ="nb "> str</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> device</ span > < span class ="p "> ),</ span >
@@ -756,11 +756,12 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
756
756
< span class ="c1 "> # See Note [Don't serialize hooks]</ span >
757
757
< span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> requires_grad</ span > < span class ="p "> ,</ span > < span class ="n "> _</ span > < span class ="p "> ,</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> _backward_hooks</ span > < span class ="o "> =</ span > < span class ="n "> state</ span >
758
758
759
- < span class ="k "> def</ span > < span class ="fm "> __repr__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
759
+ < span class ="k "> def</ span > < span class ="fm "> __repr__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> , </ span > < span class =" o " > * </ span > < span class =" p " > , </ span > < span class =" n " > tensor_contents </ span > < span class =" o " > = </ span > < span class =" kc " > None </ span > < span class =" p " > ):</ span >
760
760
< span class ="k "> if</ span > < span class ="n "> has_torch_function_unary</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
761
- < span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="o "> .</ span > < span class ="fm "> __repr__</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,),</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span >
761
+ < span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="o "> .</ span > < span class ="fm "> __repr__</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,),</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span >
762
+ < span class ="n "> tensor_contents</ span > < span class ="o "> =</ span > < span class ="n "> tensor_contents</ span > < span class ="p "> )</ span >
762
763
< span class ="c1 "> # All strings are unicode in Python 3.</ span >
763
- < span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _tensor_str</ span > < span class ="o "> .</ span > < span class ="n "> _str</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span >
764
+ < span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _tensor_str</ span > < span class ="o "> .</ span > < span class ="n "> _str</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> , </ span > < span class =" n " > tensor_contents </ span > < span class =" o " > = </ span > < span class =" n " > tensor_contents </ span > < span class =" p " > )</ span >
764
765
765
766
< div class ="viewcode-block " id ="Tensor.backward "> < a class ="viewcode-back " href ="../../generated/torch.Tensor.backward.html#torch.Tensor.backward "> [docs]</ a > < span class ="k "> def</ span > < span class ="nf "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
766
767
< span class ="sa "> r</ span > < span class ="sd "> """Computes the gradient of current tensor w.r.t. graph leaves.</ span >
@@ -949,11 +950,11 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
949
950
< span class ="k "> else</ span > < span class ="p "> :</ span >
950
951
< span class ="k "> return</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> flip</ span > < span class ="p "> (</ span > < span class ="mi "> 0</ span > < span class ="p "> )</ span >
951
952
952
- < div class =" viewcode-block " id =" Tensor.norm " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.norm.html#torch.Tensor.norm " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> norm</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="o "> =</ span > < span class ="s2 "> "fro"</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> keepdim</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
953
+ < span class ="k "> def</ span > < span class ="nf "> norm</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="o "> =</ span > < span class ="s2 "> "fro"</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> keepdim</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
953
954
< span class ="sa "> r</ span > < span class ="sd "> """See :func:`torch.norm`"""</ span >
954
955
< span class ="k "> if</ span > < span class ="n "> has_torch_function_unary</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
955
956
< span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="o "> .</ span > < span class ="n "> norm</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,),</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="o "> =</ span > < span class ="n "> p</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="o "> =</ span > < span class ="n "> dim</ span > < span class ="p "> ,</ span > < span class ="n "> keepdim</ span > < span class ="o "> =</ span > < span class ="n "> keepdim</ span > < span class ="p "> ,</ span > < span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="n "> dtype</ span > < span class ="p "> )</ span >
956
- < span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> norm</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="p "> ,</ span > < span class ="n "> keepdim</ span > < span class ="p "> ,</ span > < span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="n "> dtype</ span > < span class ="p "> )</ span > </ div >
957
+ < span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> norm</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> p</ span > < span class ="p "> ,</ span > < span class ="n "> dim</ span > < span class ="p "> ,</ span > < span class ="n "> keepdim</ span > < span class ="p "> ,</ span > < span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="n "> dtype</ span > < span class ="p "> )</ span >
957
958
958
959
< span class ="k "> def</ span > < span class ="nf "> lu</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> pivot</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span > < span class ="p "> ,</ span > < span class ="n "> get_infos</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ):</ span >
959
960
< span class ="sa "> r</ span > < span class ="sd "> """See :func:`torch.lu`"""</ span >
0 commit comments