217
217
< div class ="pytorch-left-menu-search ">
218
218
219
219
< div class ="version ">
220
- < a href ='https://pytorch.org/docs/versions.html '> master (1.12.0a0+gite175065 ) ▼</ a >
220
+ < a href ='https://pytorch.org/docs/versions.html '> master (1.12.0a0+gitedffd59 ) ▼</ a >
221
221
</ div >
222
222
223
223
@@ -764,7 +764,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
764
764
< span class ="c1 "> # All strings are unicode in Python 3.</ span >
765
765
< span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> _tensor_str</ span > < span class ="o "> .</ span > < span class ="n "> _str</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> tensor_contents</ span > < span class ="o "> =</ span > < span class ="n "> tensor_contents</ span > < span class ="p "> )</ span >
766
766
767
- < div class =" viewcode-block " id =" Tensor.backward " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.backward.html#torch.Tensor.backward " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
767
+ < span class ="k "> def</ span > < span class ="nf "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ):</ span >
768
768
< span class ="sa "> r</ span > < span class ="sd "> """Computes the gradient of current tensor w.r.t. graph leaves.</ span >
769
769
770
770
< span class ="sd "> The graph is differentiated using the chain rule. If the tensor is</ span >
@@ -820,7 +820,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
820
820
< span class ="n "> retain_graph</ span > < span class ="o "> =</ span > < span class ="n "> retain_graph</ span > < span class ="p "> ,</ span >
821
821
< span class ="n "> create_graph</ span > < span class ="o "> =</ span > < span class ="n "> create_graph</ span > < span class ="p "> ,</ span >
822
822
< span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="n "> inputs</ span > < span class ="p "> )</ span >
823
- < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> autograd</ span > < span class ="o "> .</ span > < span class ="n "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="n "> inputs</ span > < span class ="p "> )</ span > </ div >
823
+ < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> autograd</ span > < span class ="o "> .</ span > < span class ="n "> backward</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> gradient</ span > < span class ="p "> ,</ span > < span class ="n "> retain_graph</ span > < span class ="p "> ,</ span > < span class ="n "> create_graph</ span > < span class ="p "> ,</ span > < span class ="n "> inputs</ span > < span class ="o "> =</ span > < span class ="n "> inputs</ span > < span class ="p "> )</ span >
824
824
825
825
< span class ="k "> def</ span > < span class ="nf "> register_hook</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> hook</ span > < span class ="p "> ):</ span >
826
826
< span class ="sa "> r</ span > < span class ="sd "> """Registers a backward hook.</ span >
@@ -922,14 +922,14 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
922
922
< span class ="s2 "> have forward mode AD gradients.</ span >
923
923
< span class ="s2 "> """</ span > < span class ="p "> )</ span >
924
924
925
- < span class ="k "> def</ span > < span class ="nf "> is_shared</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
925
+ < div class =" viewcode-block " id =" Tensor.is_shared " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.is_shared.html#torch.Tensor.is_shared " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> is_shared</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
926
926
< span class ="sa "> r</ span > < span class ="sd "> """Checks if tensor is in shared memory.</ span >
927
927
928
928
< span class ="sd "> This is always ``True`` for CUDA tensors.</ span >
929
929
< span class ="sd "> """</ span >
930
930
< span class ="k "> if</ span > < span class ="n "> has_torch_function_unary</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
931
931
< span class ="k "> return</ span > < span class ="n "> handle_torch_function</ span > < span class ="p "> (</ span > < span class ="n "> Tensor</ span > < span class ="o "> .</ span > < span class ="n "> is_shared</ span > < span class ="p "> ,</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,),</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span >
932
- < span class ="k "> return</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> storage</ span > < span class ="p "> ()</ span > < span class ="o "> .</ span > < span class ="n "> is_shared</ span > < span class ="p "> ()</ span >
932
+ < span class ="k "> return</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> storage</ span > < span class ="p "> ()</ span > < span class ="o "> .</ span > < span class ="n "> is_shared</ span > < span class ="p "> ()</ span > </ div >
933
933
934
934
< span class ="k "> def</ span > < span class ="nf "> share_memory_</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
935
935
< span class ="sa "> r</ span > < span class ="sd "> """Moves the underlying storage to shared memory.</ span >
@@ -992,7 +992,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
992
992
< span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> stft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> ,</ span > < span class ="n "> win_length</ span > < span class ="p "> ,</ span > < span class ="n "> window</ span > < span class ="p "> ,</ span > < span class ="n "> center</ span > < span class ="p "> ,</ span >
993
993
< span class ="n "> pad_mode</ span > < span class ="p "> ,</ span > < span class ="n "> normalized</ span > < span class ="p "> ,</ span > < span class ="n "> onesided</ span > < span class ="p "> ,</ span > < span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span > < span class ="p "> )</ span >
994
994
995
- < span class ="k "> def</ span > < span class ="nf "> istft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> :</ span > < span class ="nb "> int</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
995
+ < div class =" viewcode-block " id =" Tensor.istft " > < a class =" viewcode-back " href =" ../../generated/torch.Tensor.istft.html#torch.Tensor.istft " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> istft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> :</ span > < span class ="nb "> int</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
996
996
< span class ="n "> win_length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> window</ span > < span class ="p "> :</ span > < span class ="s1 "> 'Optional[Tensor]'</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
997
997
< span class ="n "> center</ span > < span class ="p "> :</ span > < span class ="nb "> bool</ span > < span class ="o "> =</ span > < span class ="kc "> True</ span > < span class ="p "> ,</ span > < span class ="n "> normalized</ span > < span class ="p "> :</ span > < span class ="nb "> bool</ span > < span class ="o "> =</ span > < span class ="kc "> False</ span > < span class ="p "> ,</ span >
998
998
< span class ="n "> onesided</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> bool</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span > < span class ="n "> length</ span > < span class ="p "> :</ span > < span class ="n "> Optional</ span > < span class ="p "> [</ span > < span class ="nb "> int</ span > < span class ="p "> ]</ span > < span class ="o "> =</ span > < span class ="kc "> None</ span > < span class ="p "> ,</ span >
@@ -1005,7 +1005,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
1005
1005
< span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span >
1006
1006
< span class ="p "> )</ span >
1007
1007
< span class ="k "> return</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> istft</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> n_fft</ span > < span class ="p "> ,</ span > < span class ="n "> hop_length</ span > < span class ="p "> ,</ span > < span class ="n "> win_length</ span > < span class ="p "> ,</ span > < span class ="n "> window</ span > < span class ="p "> ,</ span > < span class ="n "> center</ span > < span class ="p "> ,</ span >
1008
- < span class ="n "> normalized</ span > < span class ="p "> ,</ span > < span class ="n "> onesided</ span > < span class ="p "> ,</ span > < span class ="n "> length</ span > < span class ="p "> ,</ span > < span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span > < span class ="p "> )</ span >
1008
+ < span class ="n "> normalized</ span > < span class ="p "> ,</ span > < span class ="n "> onesided</ span > < span class ="p "> ,</ span > < span class ="n "> length</ span > < span class ="p "> ,</ span > < span class ="n "> return_complex</ span > < span class ="o "> =</ span > < span class ="n "> return_complex</ span > < span class ="p "> )</ span > </ div >
1009
1009
1010
1010
< span class ="k "> def</ span > < span class ="nf "> resize</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="o "> *</ span > < span class ="n "> sizes</ span > < span class ="p "> ):</ span >
1011
1011
< span class ="k "> if</ span > < span class ="n "> has_torch_function_unary</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ):</ span >
@@ -1073,6 +1073,7 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
1073
1073
< span class ="fm "> __itruediv__</ span > < span class ="o "> =</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _TensorBase</ span > < span class ="o "> .</ span > < span class ="n "> __idiv__</ span >
1074
1074
1075
1075
< span class ="fm "> __pow__</ span > < span class ="o "> =</ span > < span class ="n "> _handle_torch_function_and_wrap_type_error_to_not_implemented</ span > < span class ="p "> (</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _TensorBase</ span > < span class ="o "> .</ span > < span class ="n "> pow</ span > < span class ="p "> )</ span >
1076
+ < span class ="fm "> __ipow__</ span > < span class ="o "> =</ span > < span class ="n "> _handle_torch_function_and_wrap_type_error_to_not_implemented</ span > < span class ="p "> (</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _TensorBase</ span > < span class ="o "> .</ span > < span class ="n "> pow_</ span > < span class ="p "> )</ span >
1076
1077
1077
1078
< span class ="nd "> @_handle_torch_function_and_wrap_type_error_to_not_implemented</ span >
1078
1079
< span class ="k "> def</ span > < span class ="fm "> __rmod__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> other</ span > < span class ="p "> ):</ span >
@@ -1085,10 +1086,6 @@ <h1>Source code for torch._tensor</h1><div class="highlight"><pre>
1085
1086
< span class ="k "> return</ span > < span class ="bp "> self</ span > < span class ="o "> .</ span > < span class ="n "> item</ span > < span class ="p "> ()</ span > < span class ="o "> .</ span > < span class ="fm "> __format__</ span > < span class ="p "> (</ span > < span class ="n "> format_spec</ span > < span class ="p "> )</ span >
1086
1087
< span class ="k "> return</ span > < span class ="nb "> object</ span > < span class ="o "> .</ span > < span class ="fm "> __format__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> format_spec</ span > < span class ="p "> )</ span >
1087
1088
1088
- < span class ="nd "> @_handle_torch_function_and_wrap_type_error_to_not_implemented</ span >
1089
- < span class ="k "> def</ span > < span class ="fm "> __ipow__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> other</ span > < span class ="p "> ):</ span > < span class ="c1 "> # type: ignore[misc]</ span >
1090
- < span class ="k "> return</ span > < span class ="bp "> NotImplemented</ span >
1091
-
1092
1089
< span class ="nd "> @_handle_torch_function_and_wrap_type_error_to_not_implemented</ span >
1093
1090
< span class ="k "> def</ span > < span class ="fm "> __rpow__</ span > < span class ="p "> (</ span > < span class ="bp "> self</ span > < span class ="p "> ,</ span > < span class ="n "> other</ span > < span class ="p "> ):</ span >
1094
1091
< span class ="n "> dtype</ span > < span class ="o "> =</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> result_type</ span > < span class ="p "> (</ span > < span class ="n "> other</ span > < span class ="p "> ,</ span > < span class ="bp "> self</ span > < span class ="p "> )</ span >
0 commit comments