forked from HypothesisWorks/hypothesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_gufunc.py
224 lines (192 loc) · 7.54 KB
/
test_gufunc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Most of this work is copyright (C) 2013-2020 David R. MacIver
# (david@drmaciver.com), but it contains contributions by others. See
# CONTRIBUTING.rst for a full list of people who may hold copyright, and
# consult the git log if you need to determine who owns an individual
# contribution.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
#
# END HEADER
import numpy as np
import pytest
from pytest import param
from hypothesis import example, given, note, settings, strategies as st
from hypothesis.errors import InvalidArgument
from hypothesis.extra import numpy as nps
from tests.common.debug import find_any, minimal
def use_signature_examples(func):
for sig in [
"(),()->()",
"(i)->()",
"(i),(i)->()",
"(m,n),(n,p)->(m,p)",
"(n),(n,p)->(p)",
"(m,n),(n)->(m)",
"(m?,n),(n,p?)->(m?,p?)",
"(3),(3)->(3)",
]:
func = example(sig)(func)
return func
def hy_sig_2_np_sig(hy_sig):
return (
[tuple(d.strip("?") for d in shape) for shape in hy_sig.input_shapes],
[tuple(d.strip("?") for d in hy_sig.result_shape)],
)
@use_signature_examples
@example("()->(%s),()" % ",".join(33 * "0"))
@given(st.from_regex(np.lib.function_base._SIGNATURE))
def test_numpy_signature_parses(sig):
if sig == "(m?,n),(n,p?)->(m?,p?)": # matmul example
return
np_sig = np.lib.function_base._parse_gufunc_signature(sig)
try:
hy_sig = nps._hypothesis_parse_gufunc_signature(sig, all_checks=False)
assert np_sig == hy_sig_2_np_sig(hy_sig)
except InvalidArgument:
shape_too_long = any(len(s) > 32 for s in np_sig[0] + np_sig[1])
multiple_outputs = len(np_sig[1]) > 1
assert shape_too_long or multiple_outputs
# Now, if we can fix this up does it validate?
in_, out = sig.split("->")
sig = in_ + "->" + out.split(",(")[0]
np_sig = np.lib.function_base._parse_gufunc_signature(sig)
if all(len(s) <= 32 for s in np_sig[0] + np_sig[1]):
hy_sig = nps._hypothesis_parse_gufunc_signature(sig, all_checks=False)
assert np_sig == hy_sig_2_np_sig(hy_sig)
@use_signature_examples
@given(st.from_regex(nps._SIGNATURE))
def test_hypothesis_signature_parses(sig):
hy_sig = nps._hypothesis_parse_gufunc_signature(sig, all_checks=False)
try:
np_sig = np.lib.function_base._parse_gufunc_signature(sig)
assert np_sig == hy_sig_2_np_sig(hy_sig)
except ValueError:
assert "?" in sig
# We can always fix this up, and it should then always validate.
sig = sig.replace("?", "")
hy_sig = nps._hypothesis_parse_gufunc_signature(sig, all_checks=False)
np_sig = np.lib.function_base._parse_gufunc_signature(sig)
assert np_sig == hy_sig_2_np_sig(hy_sig)
def test_frozen_dims_signature():
nps._hypothesis_parse_gufunc_signature("(2),(3)->(4)")
@st.composite
def gufunc_arrays(draw, shape_strat, **kwargs):
"""An example user strategy built on top of mutually_broadcastable_shapes."""
input_shapes, result_shape = draw(shape_strat)
arrays_strat = st.tuples(*(nps.arrays(shape=s, **kwargs) for s in input_shapes))
return draw(arrays_strat), result_shape
@given(
gufunc_arrays(
nps.mutually_broadcastable_shapes(signature=np.matmul.signature),
dtype="float64",
elements=st.floats(0, 1000),
)
)
def test_matmul_gufunc_shapes(everything):
arrays, result_shape = everything
out = np.matmul(*arrays)
assert out.shape == result_shape
@settings(deadline=None, max_examples=10)
@pytest.mark.parametrize(
"target_sig",
("(i),(i)->()", "(m,n),(n,p)->(m,p)", "(n),(n,p)->(p)", "(m,n),(n)->(m)"),
)
@given(data=st.data())
def test_matmul_signature_can_exercise_all_combination_of_optional_dims(
target_sig, data
):
target_shapes = data.draw(
nps.mutually_broadcastable_shapes(signature=target_sig, max_dims=0)
)
find_any(
nps.mutually_broadcastable_shapes(
signature="(m?,n),(n,p?)->(m?,p?)", max_dims=0
),
lambda shapes: shapes == target_shapes,
settings(max_examples=10 ** 6),
)
@settings(deadline=None, max_examples=50)
@given(
min_dims=st.integers(0, 4),
min_side=st.integers(2, 3),
n_fixed=st.booleans(),
data=st.data(),
)
def test_matmul_sig_shrinks_as_documented(min_dims, min_side, n_fixed, data):
sig = "(m?,n),(n,p?)->(m?,p?)"
if n_fixed:
n_value = data.draw(st.integers(0, 4))
sig = sig.replace("n", str(n_value))
else:
n_value = min_side
note(f"signature: {sig}")
max_dims = data.draw(st.none() | st.integers(min_dims, 4), label="max_dims")
max_side = data.draw(st.none() | st.integers(min_side, 6), label="max_side")
smallest_shapes, result = minimal(
nps.mutually_broadcastable_shapes(
signature=sig,
min_side=min_side,
max_side=max_side,
min_dims=min_dims,
max_dims=max_dims,
)
)
note("(smallest_shapes, result): {}".format((smallest_shapes, result)))
# if min_dims >= 1 then core dims are never excluded
# otherwise, should shrink towards excluding all optional dims
expected_input_0 = (
(n_value,) if min_dims == 0 else (min_side,) * min_dims + (min_side, n_value)
)
assert expected_input_0 == smallest_shapes[0]
expected_input_1 = (
(n_value,) if min_dims == 0 else (min_side,) * min_dims + (n_value, min_side)
)
assert expected_input_1 == smallest_shapes[1]
def gufunc_sig_to_einsum_sig(gufunc_sig):
"""E.g. (i,j),(j,k)->(i,k) becomes ...ij,...jk->...ik"""
def einlabels(labels):
assert "x" not in labels, "we reserve x for fixed-dimensions"
return "..." + "".join(i if not i.isdigit() else "x" for i in labels)
gufunc_sig = nps._hypothesis_parse_gufunc_signature(gufunc_sig)
input_sig = ",".join(map(einlabels, gufunc_sig.input_shapes))
return input_sig + "->" + einlabels(gufunc_sig.result_shape)
@pytest.mark.parametrize(
("gufunc_sig"),
[
param("()->()", id="unary sum"),
param("(),()->()", id="binary sum"),
param("(),(),()->()", id="trinary sum"),
param("(i)->()", id="sum1d"),
param("(i,j)->(j)", id="sum rows"),
param("(i),(i)->()", id="inner1d"),
param("(i),(i),(i)->()", id="trinary inner1d"),
param("(m,n),(n,p)->(m,p)", id="matmat"),
param("(n),(n,p)->(p)", id="vecmat"),
param("(i,t),(j,t)->(i,j)", id="outer-inner"),
param("(3),(3)->(3)", id="cross1d"),
param("(i,j)->(j,i)", id="transpose"),
param("(i),(j)->(i,j)", id="outer"),
param("(i,3),(3,k)->(3,i,k)", id="fixed dim outer product"),
param("(i),(j),(k)->(i,j,k)", id="trinary outer"),
param("(i,i)->(i)", id="trace"),
param("(j,i,i,j)->(i,j)", id="bigger trace"),
param("(k),(j,i,k,i,j),(j,i)->(i,j)", id="trace product"),
],
)
@given(data=st.data())
def test_einsum_gufunc_shapes(gufunc_sig, data):
arrays, result_shape = data.draw(
gufunc_arrays(
nps.mutually_broadcastable_shapes(signature=gufunc_sig),
dtype="float64",
elements=st.floats(0, 1000),
),
label="arrays, result_shape",
)
out = np.einsum(gufunc_sig_to_einsum_sig(gufunc_sig), *arrays)
assert out.shape == result_shape