forked from HypothesisWorks/hypothesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
112 lines (99 loc) · 2.92 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Most of this work is copyright (C) 2013-2020 David R. MacIver
# (david@drmaciver.com), but it contains contributions by others. See
# CONTRIBUTING.rst for a full list of people who may hold copyright, and
# consult the git log if you need to determine who owns an individual
# contribution.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
#
# END HEADER
import sys
from collections import namedtuple
from hypothesis.strategies import (
binary,
booleans,
builds,
complex_numbers,
decimals,
dictionaries,
fixed_dictionaries,
floats,
fractions,
frozensets,
integers,
just,
lists,
none,
one_of,
randoms,
recursive,
sampled_from,
sets,
text,
tuples,
)
from tests.common.debug import TIME_INCREMENT
__all__ = ["standard_types", "OrderedPair", "TIME_INCREMENT"]
OrderedPair = namedtuple("OrderedPair", ("left", "right"))
ordered_pair = integers().flatmap(
lambda right: integers(min_value=0).map(
lambda length: OrderedPair(right - length, right)
)
)
def constant_list(strat):
return strat.flatmap(lambda v: lists(just(v)))
ABC = namedtuple("ABC", ("a", "b", "c"))
def abc(x, y, z):
return builds(ABC, x, y, z)
standard_types = [
lists(none(), max_size=0),
tuples(),
sets(none(), max_size=0),
frozensets(none(), max_size=0),
fixed_dictionaries({}),
abc(booleans(), booleans(), booleans()),
abc(booleans(), booleans(), integers()),
fixed_dictionaries({"a": integers(), "b": booleans()}),
dictionaries(booleans(), integers()),
dictionaries(text(), booleans()),
one_of(integers(), tuples(booleans())),
sampled_from(range(10)),
one_of(just("a"), just("b"), just("c")),
sampled_from(("a", "b", "c")),
integers(),
integers(min_value=3),
integers(min_value=(-(2 ** 32)), max_value=(2 ** 64)),
floats(),
floats(min_value=-2.0, max_value=3.0),
floats(),
floats(min_value=-2.0),
floats(),
floats(max_value=-0.0),
floats(),
floats(min_value=0.0),
floats(min_value=3.14, max_value=3.14),
text(),
binary(),
booleans(),
tuples(booleans(), booleans()),
frozensets(integers()),
sets(frozensets(booleans())),
complex_numbers(),
fractions(),
decimals(),
lists(lists(booleans())),
lists(floats(0.0, 0.0)),
ordered_pair,
constant_list(integers()),
integers().filter(lambda x: abs(x) > 100),
floats(min_value=-sys.float_info.max, max_value=sys.float_info.max),
none(),
randoms(use_true_random=True),
booleans().flatmap(lambda x: booleans() if x else complex_numbers()),
recursive(base=booleans(), extend=lambda x: lists(x, max_size=3), max_leaves=10),
]