-
Notifications
You must be signed in to change notification settings - Fork 13.3k
/
Copy pathbit_set.rs
1881 lines (1679 loc) · 65.7 KB
/
bit_set.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use std::marker::PhantomData;
use std::ops::{BitAnd, BitAndAssign, BitOrAssign, Bound, Not, Range, RangeBounds, Shl};
use std::rc::Rc;
use std::{fmt, iter, mem, slice};
use Chunk::*;
#[cfg(feature = "nightly")]
use rustc_macros::{Decodable_Generic, Encodable_Generic};
use smallvec::{SmallVec, smallvec};
use crate::{Idx, IndexVec};
#[cfg(test)]
mod tests;
type Word = u64;
const WORD_BYTES: usize = mem::size_of::<Word>();
const WORD_BITS: usize = WORD_BYTES * 8;
// The choice of chunk size has some trade-offs.
//
// A big chunk size tends to favour cases where many large `ChunkedBitSet`s are
// present, because they require fewer `Chunk`s, reducing the number of
// allocations and reducing peak memory usage. Also, fewer chunk operations are
// required, though more of them might be `Mixed`.
//
// A small chunk size tends to favour cases where many small `ChunkedBitSet`s
// are present, because less space is wasted at the end of the final chunk (if
// it's not full).
const CHUNK_WORDS: usize = 32;
const CHUNK_BITS: usize = CHUNK_WORDS * WORD_BITS; // 2048 bits
/// ChunkSize is small to keep `Chunk` small. The static assertion ensures it's
/// not too small.
type ChunkSize = u16;
const _: () = assert!(CHUNK_BITS <= ChunkSize::MAX as usize);
pub trait BitRelations<Rhs> {
fn union(&mut self, other: &Rhs) -> bool;
fn subtract(&mut self, other: &Rhs) -> bool;
fn intersect(&mut self, other: &Rhs) -> bool;
}
#[inline]
fn inclusive_start_end<T: Idx>(
range: impl RangeBounds<T>,
domain: usize,
) -> Option<(usize, usize)> {
// Both start and end are inclusive.
let start = match range.start_bound().cloned() {
Bound::Included(start) => start.index(),
Bound::Excluded(start) => start.index() + 1,
Bound::Unbounded => 0,
};
let end = match range.end_bound().cloned() {
Bound::Included(end) => end.index(),
Bound::Excluded(end) => end.index().checked_sub(1)?,
Bound::Unbounded => domain - 1,
};
assert!(end < domain);
if start > end {
return None;
}
Some((start, end))
}
macro_rules! bit_relations_inherent_impls {
() => {
/// Sets `self = self | other` and returns `true` if `self` changed
/// (i.e., if new bits were added).
pub fn union<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::union(self, other)
}
/// Sets `self = self - other` and returns `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn subtract<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::subtract(self, other)
}
/// Sets `self = self & other` and return `true` if `self` changed.
/// (i.e., if any bits were removed).
pub fn intersect<Rhs>(&mut self, other: &Rhs) -> bool
where
Self: BitRelations<Rhs>,
{
<Self as BitRelations<Rhs>>::intersect(self, other)
}
};
}
/// A fixed-size bitset type with a dense representation.
///
/// Note 1: Since this bitset is dense, if your domain is big, and/or relatively
/// homogeneous (for example, with long runs of bits set or unset), then it may
/// be preferable to instead use a [MixedBitSet], or an
/// [IntervalSet](crate::interval::IntervalSet). They should be more suited to
/// sparse, or highly-compressible, domains.
///
/// Note 2: Use [`GrowableBitSet`] if you need support for resizing after creation.
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size. All operations that involve two bitsets
/// will panic if the bitsets have differing domain sizes.
///
#[cfg_attr(feature = "nightly", derive(Decodable_Generic, Encodable_Generic))]
#[derive(Eq, PartialEq, Hash)]
pub struct DenseBitSet<T> {
domain_size: usize,
words: SmallVec<[Word; 2]>,
marker: PhantomData<T>,
}
impl<T> DenseBitSet<T> {
/// Gets the domain size.
pub fn domain_size(&self) -> usize {
self.domain_size
}
}
impl<T: Idx> DenseBitSet<T> {
/// Creates a new, empty bitset with a given `domain_size`.
#[inline]
pub fn new_empty(domain_size: usize) -> DenseBitSet<T> {
let num_words = num_words(domain_size);
DenseBitSet { domain_size, words: smallvec![0; num_words], marker: PhantomData }
}
/// Creates a new, filled bitset with a given `domain_size`.
#[inline]
pub fn new_filled(domain_size: usize) -> DenseBitSet<T> {
let num_words = num_words(domain_size);
let mut result =
DenseBitSet { domain_size, words: smallvec![!0; num_words], marker: PhantomData };
result.clear_excess_bits();
result
}
/// Clear all elements.
#[inline]
pub fn clear(&mut self) {
self.words.fill(0);
}
/// Clear excess bits in the final word.
fn clear_excess_bits(&mut self) {
clear_excess_bits_in_final_word(self.domain_size, &mut self.words);
}
/// Count the number of set bits in the set.
pub fn count(&self) -> usize {
self.words.iter().map(|e| e.count_ones() as usize).sum()
}
/// Returns `true` if `self` contains `elem`.
#[inline]
pub fn contains(&self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
(self.words[word_index] & mask) != 0
}
/// Is `self` is a (non-strict) superset of `other`?
#[inline]
pub fn superset(&self, other: &DenseBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b)
}
/// Is the set empty?
#[inline]
pub fn is_empty(&self) -> bool {
self.words.iter().all(|a| *a == 0)
}
/// Insert `elem`. Returns whether the set has changed.
#[inline]
pub fn insert(&mut self, elem: T) -> bool {
assert!(
elem.index() < self.domain_size,
"inserting element at index {} but domain size is {}",
elem.index(),
self.domain_size,
);
let (word_index, mask) = word_index_and_mask(elem);
let word_ref = &mut self.words[word_index];
let word = *word_ref;
let new_word = word | mask;
*word_ref = new_word;
new_word != word
}
#[inline]
pub fn insert_range(&mut self, elems: impl RangeBounds<T>) {
let Some((start, end)) = inclusive_start_end(elems, self.domain_size) else {
return;
};
let (start_word_index, start_mask) = word_index_and_mask(start);
let (end_word_index, end_mask) = word_index_and_mask(end);
// Set all words in between start and end (exclusively of both).
for word_index in (start_word_index + 1)..end_word_index {
self.words[word_index] = !0;
}
if start_word_index != end_word_index {
// Start and end are in different words, so we handle each in turn.
//
// We set all leading bits. This includes the start_mask bit.
self.words[start_word_index] |= !(start_mask - 1);
// And all trailing bits (i.e. from 0..=end) in the end word,
// including the end.
self.words[end_word_index] |= end_mask | (end_mask - 1);
} else {
self.words[start_word_index] |= end_mask | (end_mask - start_mask);
}
}
/// Sets all bits to true.
pub fn insert_all(&mut self) {
self.words.fill(!0);
self.clear_excess_bits();
}
/// Returns `true` if the set has changed.
#[inline]
pub fn remove(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
let word_ref = &mut self.words[word_index];
let word = *word_ref;
let new_word = word & !mask;
*word_ref = new_word;
new_word != word
}
/// Iterates over the indices of set bits in a sorted order.
#[inline]
pub fn iter(&self) -> BitIter<'_, T> {
BitIter::new(&self.words)
}
pub fn last_set_in(&self, range: impl RangeBounds<T>) -> Option<T> {
let (start, end) = inclusive_start_end(range, self.domain_size)?;
let (start_word_index, _) = word_index_and_mask(start);
let (end_word_index, end_mask) = word_index_and_mask(end);
let end_word = self.words[end_word_index] & (end_mask | (end_mask - 1));
if end_word != 0 {
let pos = max_bit(end_word) + WORD_BITS * end_word_index;
if start <= pos {
return Some(T::new(pos));
}
}
// We exclude end_word_index from the range here, because we don't want
// to limit ourselves to *just* the last word: the bits set it in may be
// after `end`, so it may not work out.
if let Some(offset) =
self.words[start_word_index..end_word_index].iter().rposition(|&w| w != 0)
{
let word_idx = start_word_index + offset;
let start_word = self.words[word_idx];
let pos = max_bit(start_word) + WORD_BITS * word_idx;
if start <= pos {
return Some(T::new(pos));
}
}
None
}
bit_relations_inherent_impls! {}
/// Sets `self = self | !other`.
///
/// FIXME: Incorporate this into [`BitRelations`] and fill out
/// implementations for other bitset types, if needed.
pub fn union_not(&mut self, other: &DenseBitSet<T>) {
assert_eq!(self.domain_size, other.domain_size);
// FIXME(Zalathar): If we were to forcibly _set_ all excess bits before
// the bitwise update, and then clear them again afterwards, we could
// quickly and accurately detect whether the update changed anything.
// But that's only worth doing if there's an actual use-case.
bitwise(&mut self.words, &other.words, |a, b| a | !b);
// The bitwise update `a | !b` can result in the last word containing
// out-of-domain bits, so we need to clear them.
self.clear_excess_bits();
}
}
// dense REL dense
impl<T: Idx> BitRelations<DenseBitSet<T>> for DenseBitSet<T> {
fn union(&mut self, other: &DenseBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a | b)
}
fn subtract(&mut self, other: &DenseBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & !b)
}
fn intersect(&mut self, other: &DenseBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| a & b)
}
}
impl<T: Idx> From<GrowableBitSet<T>> for DenseBitSet<T> {
fn from(bit_set: GrowableBitSet<T>) -> Self {
bit_set.bit_set
}
}
impl<T> Clone for DenseBitSet<T> {
fn clone(&self) -> Self {
DenseBitSet {
domain_size: self.domain_size,
words: self.words.clone(),
marker: PhantomData,
}
}
fn clone_from(&mut self, from: &Self) {
self.domain_size = from.domain_size;
self.words.clone_from(&from.words);
}
}
impl<T: Idx> fmt::Debug for DenseBitSet<T> {
fn fmt(&self, w: &mut fmt::Formatter<'_>) -> fmt::Result {
w.debug_list().entries(self.iter()).finish()
}
}
impl<T: Idx> ToString for DenseBitSet<T> {
fn to_string(&self) -> String {
let mut result = String::new();
let mut sep = '[';
// Note: this is a little endian printout of bytes.
// i tracks how many bits we have printed so far.
let mut i = 0;
for word in &self.words {
let mut word = *word;
for _ in 0..WORD_BYTES {
// for each byte in `word`:
let remain = self.domain_size - i;
// If less than a byte remains, then mask just that many bits.
let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
assert!(mask <= 0xFF);
let byte = word & mask;
result.push_str(&format!("{sep}{byte:02x}"));
if remain <= 8 {
break;
}
word >>= 8;
i += 8;
sep = '-';
}
sep = '|';
}
result.push(']');
result
}
}
pub struct BitIter<'a, T: Idx> {
/// A copy of the current word, but with any already-visited bits cleared.
/// (This lets us use `trailing_zeros()` to find the next set bit.) When it
/// is reduced to 0, we move onto the next word.
word: Word,
/// The offset (measured in bits) of the current word.
offset: usize,
/// Underlying iterator over the words.
iter: slice::Iter<'a, Word>,
marker: PhantomData<T>,
}
impl<'a, T: Idx> BitIter<'a, T> {
#[inline]
fn new(words: &'a [Word]) -> BitIter<'a, T> {
// We initialize `word` and `offset` to degenerate values. On the first
// call to `next()` we will fall through to getting the first word from
// `iter`, which sets `word` to the first word (if there is one) and
// `offset` to 0. Doing it this way saves us from having to maintain
// additional state about whether we have started.
BitIter {
word: 0,
offset: usize::MAX - (WORD_BITS - 1),
iter: words.iter(),
marker: PhantomData,
}
}
}
impl<'a, T: Idx> Iterator for BitIter<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
loop {
if self.word != 0 {
// Get the position of the next set bit in the current word,
// then clear the bit.
let bit_pos = self.word.trailing_zeros() as usize;
self.word ^= 1 << bit_pos;
return Some(T::new(bit_pos + self.offset));
}
// Move onto the next word. `wrapping_add()` is needed to handle
// the degenerate initial value given to `offset` in `new()`.
self.word = *self.iter.next()?;
self.offset = self.offset.wrapping_add(WORD_BITS);
}
}
}
/// A fixed-size bitset type with a partially dense, partially sparse
/// representation. The bitset is broken into chunks, and chunks that are all
/// zeros or all ones are represented and handled very efficiently.
///
/// This type is especially efficient for sets that typically have a large
/// `domain_size` with significant stretches of all zeros or all ones, and also
/// some stretches with lots of 0s and 1s mixed in a way that causes trouble
/// for `IntervalSet`.
///
/// Best used via `MixedBitSet`, rather than directly, because `MixedBitSet`
/// has better performance for small bitsets.
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size. All operations that involve two bitsets
/// will panic if the bitsets have differing domain sizes.
#[derive(PartialEq, Eq)]
pub struct ChunkedBitSet<T> {
domain_size: usize,
/// The chunks. Each one contains exactly CHUNK_BITS values, except the
/// last one which contains 1..=CHUNK_BITS values.
chunks: Box<[Chunk]>,
marker: PhantomData<T>,
}
// Note: the chunk domain size is duplicated in each variant. This is a bit
// inconvenient, but it allows the type size to be smaller than if we had an
// outer struct containing a chunk domain size plus the `Chunk`, because the
// compiler can place the chunk domain size after the tag.
#[derive(Clone, Debug, PartialEq, Eq)]
enum Chunk {
/// A chunk that is all zeros; we don't represent the zeros explicitly.
/// The `ChunkSize` is always non-zero.
Zeros(ChunkSize),
/// A chunk that is all ones; we don't represent the ones explicitly.
/// `ChunkSize` is always non-zero.
Ones(ChunkSize),
/// A chunk that has a mix of zeros and ones, which are represented
/// explicitly and densely. It never has all zeros or all ones.
///
/// If this is the final chunk there may be excess, unused words. This
/// turns out to be both simpler and have better performance than
/// allocating the minimum number of words, largely because we avoid having
/// to store the length, which would make this type larger. These excess
/// words are always zero, as are any excess bits in the final in-use word.
///
/// The first `ChunkSize` field is always non-zero.
///
/// The second `ChunkSize` field is the count of 1s set in the chunk, and
/// must satisfy `0 < count < chunk_domain_size`.
///
/// The words are within an `Rc` because it's surprisingly common to
/// duplicate an entire chunk, e.g. in `ChunkedBitSet::clone_from()`, or
/// when a `Mixed` chunk is union'd into a `Zeros` chunk. When we do need
/// to modify a chunk we use `Rc::make_mut`.
Mixed(ChunkSize, ChunkSize, Rc<[Word; CHUNK_WORDS]>),
}
// This type is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
crate::static_assert_size!(Chunk, 16);
impl<T> ChunkedBitSet<T> {
pub fn domain_size(&self) -> usize {
self.domain_size
}
#[cfg(test)]
fn assert_valid(&self) {
if self.domain_size == 0 {
assert!(self.chunks.is_empty());
return;
}
assert!((self.chunks.len() - 1) * CHUNK_BITS <= self.domain_size);
assert!(self.chunks.len() * CHUNK_BITS >= self.domain_size);
for chunk in self.chunks.iter() {
chunk.assert_valid();
}
}
}
impl<T: Idx> ChunkedBitSet<T> {
/// Creates a new bitset with a given `domain_size` and chunk kind.
fn new(domain_size: usize, is_empty: bool) -> Self {
let chunks = if domain_size == 0 {
Box::new([])
} else {
// All the chunks have a chunk_domain_size of `CHUNK_BITS` except
// the final one.
let final_chunk_domain_size = {
let n = domain_size % CHUNK_BITS;
if n == 0 { CHUNK_BITS } else { n }
};
let mut chunks =
vec![Chunk::new(CHUNK_BITS, is_empty); num_chunks(domain_size)].into_boxed_slice();
*chunks.last_mut().unwrap() = Chunk::new(final_chunk_domain_size, is_empty);
chunks
};
ChunkedBitSet { domain_size, chunks, marker: PhantomData }
}
/// Creates a new, empty bitset with a given `domain_size`.
#[inline]
pub fn new_empty(domain_size: usize) -> Self {
ChunkedBitSet::new(domain_size, /* is_empty */ true)
}
/// Creates a new, filled bitset with a given `domain_size`.
#[inline]
pub fn new_filled(domain_size: usize) -> Self {
ChunkedBitSet::new(domain_size, /* is_empty */ false)
}
pub fn clear(&mut self) {
let domain_size = self.domain_size();
*self = ChunkedBitSet::new_empty(domain_size);
}
#[cfg(test)]
fn chunks(&self) -> &[Chunk] {
&self.chunks
}
/// Count the number of bits in the set.
pub fn count(&self) -> usize {
self.chunks.iter().map(|chunk| chunk.count()).sum()
}
pub fn is_empty(&self) -> bool {
self.chunks.iter().all(|chunk| matches!(chunk, Zeros(..)))
}
/// Returns `true` if `self` contains `elem`.
#[inline]
pub fn contains(&self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let chunk = &self.chunks[chunk_index(elem)];
match &chunk {
Zeros(_) => false,
Ones(_) => true,
Mixed(_, _, words) => {
let (word_index, mask) = chunk_word_index_and_mask(elem);
(words[word_index] & mask) != 0
}
}
}
#[inline]
pub fn iter(&self) -> ChunkedBitIter<'_, T> {
ChunkedBitIter::new(self)
}
/// Insert `elem`. Returns whether the set has changed.
pub fn insert(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let chunk_index = chunk_index(elem);
let chunk = &mut self.chunks[chunk_index];
match *chunk {
Zeros(chunk_domain_size) => {
if chunk_domain_size > 1 {
#[cfg(feature = "nightly")]
let mut words = {
// We take some effort to avoid copying the words.
let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed();
// SAFETY: `words` can safely be all zeroes.
unsafe { words.assume_init() }
};
#[cfg(not(feature = "nightly"))]
let mut words = {
// FIXME: unconditionally use `Rc::new_zeroed` once it is stable (#63291).
let words = mem::MaybeUninit::<[Word; CHUNK_WORDS]>::zeroed();
// SAFETY: `words` can safely be all zeroes.
let words = unsafe { words.assume_init() };
// Unfortunate possibly-large copy
Rc::new(words)
};
let words_ref = Rc::get_mut(&mut words).unwrap();
let (word_index, mask) = chunk_word_index_and_mask(elem);
words_ref[word_index] |= mask;
*chunk = Mixed(chunk_domain_size, 1, words);
} else {
*chunk = Ones(chunk_domain_size);
}
true
}
Ones(_) => false,
Mixed(chunk_domain_size, ref mut count, ref mut words) => {
// We skip all the work if the bit is already set.
let (word_index, mask) = chunk_word_index_and_mask(elem);
if (words[word_index] & mask) == 0 {
*count += 1;
if *count < chunk_domain_size {
let words = Rc::make_mut(words);
words[word_index] |= mask;
} else {
*chunk = Ones(chunk_domain_size);
}
true
} else {
false
}
}
}
}
/// Sets all bits to true.
pub fn insert_all(&mut self) {
for chunk in self.chunks.iter_mut() {
*chunk = match *chunk {
Zeros(chunk_domain_size)
| Ones(chunk_domain_size)
| Mixed(chunk_domain_size, ..) => Ones(chunk_domain_size),
}
}
}
/// Returns `true` if the set has changed.
pub fn remove(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let chunk_index = chunk_index(elem);
let chunk = &mut self.chunks[chunk_index];
match *chunk {
Zeros(_) => false,
Ones(chunk_domain_size) => {
if chunk_domain_size > 1 {
#[cfg(feature = "nightly")]
let mut words = {
// We take some effort to avoid copying the words.
let words = Rc::<[Word; CHUNK_WORDS]>::new_zeroed();
// SAFETY: `words` can safely be all zeroes.
unsafe { words.assume_init() }
};
#[cfg(not(feature = "nightly"))]
let mut words = {
// FIXME: unconditionally use `Rc::new_zeroed` once it is stable (#63291).
let words = mem::MaybeUninit::<[Word; CHUNK_WORDS]>::zeroed();
// SAFETY: `words` can safely be all zeroes.
let words = unsafe { words.assume_init() };
// Unfortunate possibly-large copy
Rc::new(words)
};
let words_ref = Rc::get_mut(&mut words).unwrap();
// Set only the bits in use.
let num_words = num_words(chunk_domain_size as usize);
words_ref[..num_words].fill(!0);
clear_excess_bits_in_final_word(
chunk_domain_size as usize,
&mut words_ref[..num_words],
);
let (word_index, mask) = chunk_word_index_and_mask(elem);
words_ref[word_index] &= !mask;
*chunk = Mixed(chunk_domain_size, chunk_domain_size - 1, words);
} else {
*chunk = Zeros(chunk_domain_size);
}
true
}
Mixed(chunk_domain_size, ref mut count, ref mut words) => {
// We skip all the work if the bit is already clear.
let (word_index, mask) = chunk_word_index_and_mask(elem);
if (words[word_index] & mask) != 0 {
*count -= 1;
if *count > 0 {
let words = Rc::make_mut(words);
words[word_index] &= !mask;
} else {
*chunk = Zeros(chunk_domain_size);
}
true
} else {
false
}
}
}
}
fn chunk_iter(&self, chunk_index: usize) -> ChunkIter<'_> {
match self.chunks.get(chunk_index) {
Some(Zeros(_chunk_domain_size)) => ChunkIter::Zeros,
Some(Ones(chunk_domain_size)) => ChunkIter::Ones(0..*chunk_domain_size as usize),
Some(Mixed(chunk_domain_size, _, ref words)) => {
let num_words = num_words(*chunk_domain_size as usize);
ChunkIter::Mixed(BitIter::new(&words[0..num_words]))
}
None => ChunkIter::Finished,
}
}
bit_relations_inherent_impls! {}
}
impl<T: Idx> BitRelations<ChunkedBitSet<T>> for ChunkedBitSet<T> {
fn union(&mut self, other: &ChunkedBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
debug_assert_eq!(self.chunks.len(), other.chunks.len());
let mut changed = false;
for (mut self_chunk, other_chunk) in self.chunks.iter_mut().zip(other.chunks.iter()) {
match (&mut self_chunk, &other_chunk) {
(_, Zeros(_)) | (Ones(_), _) => {}
(Zeros(self_chunk_domain_size), Ones(other_chunk_domain_size))
| (Mixed(self_chunk_domain_size, ..), Ones(other_chunk_domain_size))
| (Zeros(self_chunk_domain_size), Mixed(other_chunk_domain_size, ..)) => {
// `other_chunk` fully overwrites `self_chunk`
debug_assert_eq!(self_chunk_domain_size, other_chunk_domain_size);
*self_chunk = other_chunk.clone();
changed = true;
}
(
Mixed(
self_chunk_domain_size,
ref mut self_chunk_count,
ref mut self_chunk_words,
),
Mixed(_other_chunk_domain_size, _other_chunk_count, other_chunk_words),
) => {
// First check if the operation would change
// `self_chunk.words`. If not, we can avoid allocating some
// words, and this happens often enough that it's a
// performance win. Also, we only need to operate on the
// in-use words, hence the slicing.
let op = |a, b| a | b;
let num_words = num_words(*self_chunk_domain_size as usize);
if bitwise_changes(
&self_chunk_words[0..num_words],
&other_chunk_words[0..num_words],
op,
) {
let self_chunk_words = Rc::make_mut(self_chunk_words);
let has_changed = bitwise(
&mut self_chunk_words[0..num_words],
&other_chunk_words[0..num_words],
op,
);
debug_assert!(has_changed);
*self_chunk_count = self_chunk_words[0..num_words]
.iter()
.map(|w| w.count_ones() as ChunkSize)
.sum();
if *self_chunk_count == *self_chunk_domain_size {
*self_chunk = Ones(*self_chunk_domain_size);
}
changed = true;
}
}
}
}
changed
}
fn subtract(&mut self, other: &ChunkedBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
debug_assert_eq!(self.chunks.len(), other.chunks.len());
let mut changed = false;
for (mut self_chunk, other_chunk) in self.chunks.iter_mut().zip(other.chunks.iter()) {
match (&mut self_chunk, &other_chunk) {
(Zeros(..), _) | (_, Zeros(..)) => {}
(
Ones(self_chunk_domain_size) | Mixed(self_chunk_domain_size, _, _),
Ones(other_chunk_domain_size),
) => {
debug_assert_eq!(self_chunk_domain_size, other_chunk_domain_size);
changed = true;
*self_chunk = Zeros(*self_chunk_domain_size);
}
(
Ones(self_chunk_domain_size),
Mixed(other_chunk_domain_size, other_chunk_count, other_chunk_words),
) => {
debug_assert_eq!(self_chunk_domain_size, other_chunk_domain_size);
changed = true;
let num_words = num_words(*self_chunk_domain_size as usize);
debug_assert!(num_words > 0 && num_words <= CHUNK_WORDS);
let mut tail_mask =
1 << (*other_chunk_domain_size - ((num_words - 1) * WORD_BITS) as u16) - 1;
let mut self_chunk_words = **other_chunk_words;
for word in self_chunk_words[0..num_words].iter_mut().rev() {
*word = !*word & tail_mask;
tail_mask = u64::MAX;
}
let self_chunk_count = *self_chunk_domain_size - *other_chunk_count;
debug_assert_eq!(
self_chunk_count,
self_chunk_words[0..num_words]
.iter()
.map(|w| w.count_ones() as ChunkSize)
.sum()
);
*self_chunk =
Mixed(*self_chunk_domain_size, self_chunk_count, Rc::new(self_chunk_words));
}
(
Mixed(
self_chunk_domain_size,
ref mut self_chunk_count,
ref mut self_chunk_words,
),
Mixed(_other_chunk_domain_size, _other_chunk_count, other_chunk_words),
) => {
// See [`<Self as BitRelations<ChunkedBitSet<T>>>::union`] for the explanation
let op = |a: u64, b: u64| a & !b;
let num_words = num_words(*self_chunk_domain_size as usize);
if bitwise_changes(
&self_chunk_words[0..num_words],
&other_chunk_words[0..num_words],
op,
) {
let self_chunk_words = Rc::make_mut(self_chunk_words);
let has_changed = bitwise(
&mut self_chunk_words[0..num_words],
&other_chunk_words[0..num_words],
op,
);
debug_assert!(has_changed);
*self_chunk_count = self_chunk_words[0..num_words]
.iter()
.map(|w| w.count_ones() as ChunkSize)
.sum();
if *self_chunk_count == 0 {
*self_chunk = Zeros(*self_chunk_domain_size);
}
changed = true;
}
}
}
}
changed
}
fn intersect(&mut self, other: &ChunkedBitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
debug_assert_eq!(self.chunks.len(), other.chunks.len());
let mut changed = false;
for (mut self_chunk, other_chunk) in self.chunks.iter_mut().zip(other.chunks.iter()) {
match (&mut self_chunk, &other_chunk) {
(Zeros(..), _) | (_, Ones(..)) => {}
(
Ones(self_chunk_domain_size),
Zeros(other_chunk_domain_size) | Mixed(other_chunk_domain_size, ..),
)
| (Mixed(self_chunk_domain_size, ..), Zeros(other_chunk_domain_size)) => {
debug_assert_eq!(self_chunk_domain_size, other_chunk_domain_size);
changed = true;
*self_chunk = other_chunk.clone();
}
(
Mixed(
self_chunk_domain_size,
ref mut self_chunk_count,
ref mut self_chunk_words,
),
Mixed(_other_chunk_domain_size, _other_chunk_count, other_chunk_words),
) => {
// See [`<Self as BitRelations<ChunkedBitSet<T>>>::union`] for the explanation
let op = |a, b| a & b;
let num_words = num_words(*self_chunk_domain_size as usize);
if bitwise_changes(
&self_chunk_words[0..num_words],
&other_chunk_words[0..num_words],
op,
) {
let self_chunk_words = Rc::make_mut(self_chunk_words);
let has_changed = bitwise(
&mut self_chunk_words[0..num_words],
&other_chunk_words[0..num_words],
op,
);
debug_assert!(has_changed);
*self_chunk_count = self_chunk_words[0..num_words]
.iter()
.map(|w| w.count_ones() as ChunkSize)
.sum();
if *self_chunk_count == 0 {
*self_chunk = Zeros(*self_chunk_domain_size);
}
changed = true;
}
}
}
}
changed
}
}
impl<T: Idx> BitRelations<ChunkedBitSet<T>> for DenseBitSet<T> {
fn union(&mut self, other: &ChunkedBitSet<T>) -> bool {
sequential_update(|elem| self.insert(elem), other.iter())
}
fn subtract(&mut self, _other: &ChunkedBitSet<T>) -> bool {
unimplemented!("implement if/when necessary");
}
fn intersect(&mut self, other: &ChunkedBitSet<T>) -> bool {
assert_eq!(self.domain_size(), other.domain_size);
let mut changed = false;
for (i, chunk) in other.chunks.iter().enumerate() {
let mut words = &mut self.words[i * CHUNK_WORDS..];
if words.len() > CHUNK_WORDS {
words = &mut words[..CHUNK_WORDS];
}
match chunk {
Zeros(..) => {
for word in words {
if *word != 0 {
changed = true;
*word = 0;
}
}
}
Ones(..) => (),
Mixed(_, _, data) => {
for (i, word) in words.iter_mut().enumerate() {
let new_val = *word & data[i];
if new_val != *word {
changed = true;
*word = new_val;
}
}
}
}
}
changed
}
}
impl<T> Clone for ChunkedBitSet<T> {
fn clone(&self) -> Self {
ChunkedBitSet {
domain_size: self.domain_size,
chunks: self.chunks.clone(),
marker: PhantomData,
}
}
/// WARNING: this implementation of clone_from will panic if the two
/// bitsets have different domain sizes. This constraint is not inherent to
/// `clone_from`, but it works with the existing call sites and allows a
/// faster implementation, which is important because this function is hot.
fn clone_from(&mut self, from: &Self) {
assert_eq!(self.domain_size, from.domain_size);
debug_assert_eq!(self.chunks.len(), from.chunks.len());
self.chunks.clone_from(&from.chunks)
}
}
pub struct ChunkedBitIter<'a, T: Idx> {
bit_set: &'a ChunkedBitSet<T>,
// The index of the current chunk.
chunk_index: usize,