This repository was archived by the owner on Feb 5, 2019. It is now read-only.
forked from luqmana/llvm
-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathLegalizeIntegerTypes.cpp
3163 lines (2740 loc) · 126 KB
/
LegalizeIntegerTypes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements integer type expansion and promotion for LegalizeTypes.
// Promotion is the act of changing a computation in an illegal type into a
// computation in a larger type. For example, implementing i8 arithmetic in an
// i32 register (often needed on powerpc).
// Expansion is the act of changing a computation in an illegal type into a
// computation in two identical registers of a smaller type. For example,
// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
// targets).
//
//===----------------------------------------------------------------------===//
#include "LegalizeTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "legalize-types"
//===----------------------------------------------------------------------===//
// Integer Result Promotion
//===----------------------------------------------------------------------===//
/// PromoteIntegerResult - This method is called when a result of a node is
/// found to be in need of promotion to a larger type. At this point, the node
/// may also have invalid operands or may have other results that need
/// expansion, we just know that (at least) one result needs promotion.
void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
SDValue Res = SDValue();
// See if the target wants to custom expand this node.
if (CustomLowerNode(N, N->getValueType(ResNo), true))
return;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to promote this operator!");
case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break;
case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break;
case ISD::BITCAST: Res = PromoteIntRes_BITCAST(N); break;
case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break;
case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break;
case ISD::Constant: Res = PromoteIntRes_Constant(N); break;
case ISD::CONVERT_RNDSAT:
Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break;
case ISD::CTPOP: Res = PromoteIntRes_CTPOP(N); break;
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTTZ: Res = PromoteIntRes_CTTZ(N); break;
case ISD::EXTRACT_VECTOR_ELT:
Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
case ISD::LOAD: Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
case ISD::MLOAD: Res = PromoteIntRes_MLOAD(cast<MaskedLoadSDNode>(N));break;
case ISD::SELECT: Res = PromoteIntRes_SELECT(N); break;
case ISD::VSELECT: Res = PromoteIntRes_VSELECT(N); break;
case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break;
case ISD::SETCC: Res = PromoteIntRes_SETCC(N); break;
case ISD::SHL: Res = PromoteIntRes_SHL(N); break;
case ISD::SIGN_EXTEND_INREG:
Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
case ISD::SRA: Res = PromoteIntRes_SRA(N); break;
case ISD::SRL: Res = PromoteIntRes_SRL(N); break;
case ISD::TRUNCATE: Res = PromoteIntRes_TRUNCATE(N); break;
case ISD::UNDEF: Res = PromoteIntRes_UNDEF(N); break;
case ISD::VAARG: Res = PromoteIntRes_VAARG(N); break;
case ISD::EXTRACT_SUBVECTOR:
Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
case ISD::VECTOR_SHUFFLE:
Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
case ISD::INSERT_VECTOR_ELT:
Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
case ISD::BUILD_VECTOR:
Res = PromoteIntRes_BUILD_VECTOR(N); break;
case ISD::SCALAR_TO_VECTOR:
Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
case ISD::CONCAT_VECTORS:
Res = PromoteIntRes_CONCAT_VECTORS(N); break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break;
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: Res = PromoteIntRes_FP_TO_XINT(N); break;
case ISD::FP_TO_FP16: Res = PromoteIntRes_FP_TO_FP16(N); break;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
case ISD::MUL: Res = PromoteIntRes_SimpleIntBinOp(N); break;
case ISD::SDIV:
case ISD::SREM: Res = PromoteIntRes_SDIV(N); break;
case ISD::UDIV:
case ISD::UREM: Res = PromoteIntRes_UDIV(N); break;
case ISD::SADDO:
case ISD::SSUBO: Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
case ISD::UADDO:
case ISD::USUBO: Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
case ISD::SMULO:
case ISD::UMULO: Res = PromoteIntRes_XMULO(N, ResNo); break;
case ISD::ATOMIC_LOAD:
Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_SWAP:
Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
Res = PromoteIntRes_AtomicCmpSwap(cast<AtomicSDNode>(N), ResNo);
break;
}
// If the result is null then the sub-method took care of registering it.
if (Res.getNode())
SetPromotedInteger(SDValue(N, ResNo), Res);
}
SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
unsigned ResNo) {
SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
return GetPromotedInteger(Op);
}
SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
// Sign-extend the new bits, and continue the assertion.
SDValue Op = SExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::AssertSext, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
// Zero the new bits, and continue the assertion.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::AssertZext, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
N->getMemoryVT(), ResVT,
N->getChain(), N->getBasePtr(),
N->getMemOperand(), N->getOrdering(),
N->getSynchScope());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
SDValue Op2 = GetPromotedInteger(N->getOperand(2));
SDValue Res = DAG.getAtomic(N->getOpcode(), SDLoc(N),
N->getMemoryVT(),
N->getChain(), N->getBasePtr(),
Op2, N->getMemOperand(), N->getOrdering(),
N->getSynchScope());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N,
unsigned ResNo) {
if (ResNo == 1) {
assert(N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
EVT SVT = getSetCCResultType(N->getOperand(2).getValueType());
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
// Only use the result of getSetCCResultType if it is legal,
// otherwise just use the promoted result type (NVT).
if (!TLI.isTypeLegal(SVT))
SVT = NVT;
SDVTList VTs = DAG.getVTList(N->getValueType(0), SVT, MVT::Other);
SDValue Res = DAG.getAtomicCmpSwap(
ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, SDLoc(N), N->getMemoryVT(), VTs,
N->getChain(), N->getBasePtr(), N->getOperand(2), N->getOperand(3),
N->getMemOperand(), N->getSuccessOrdering(), N->getFailureOrdering(),
N->getSynchScope());
ReplaceValueWith(SDValue(N, 0), Res.getValue(0));
ReplaceValueWith(SDValue(N, 2), Res.getValue(2));
return Res.getValue(1);
}
SDValue Op2 = GetPromotedInteger(N->getOperand(2));
SDValue Op3 = GetPromotedInteger(N->getOperand(3));
SDVTList VTs =
DAG.getVTList(Op2.getValueType(), N->getValueType(1), MVT::Other);
SDValue Res = DAG.getAtomicCmpSwap(
N->getOpcode(), SDLoc(N), N->getMemoryVT(), VTs, N->getChain(),
N->getBasePtr(), Op2, Op3, N->getMemOperand(), N->getSuccessOrdering(),
N->getFailureOrdering(), N->getSynchScope());
// Update the use to N with the newly created Res.
for (unsigned i = 1, NumResults = N->getNumValues(); i < NumResults; ++i)
ReplaceValueWith(SDValue(N, i), Res.getValue(i));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
SDValue InOp = N->getOperand(0);
EVT InVT = InOp.getValueType();
EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
EVT OutVT = N->getValueType(0);
EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
SDLoc dl(N);
switch (getTypeAction(InVT)) {
case TargetLowering::TypeLegal:
break;
case TargetLowering::TypePromoteInteger:
if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
// The input promotes to the same size. Convert the promoted value.
return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
break;
case TargetLowering::TypeSoftenFloat:
// Promote the integer operand by hand.
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
case TargetLowering::TypeExpandInteger:
case TargetLowering::TypeExpandFloat:
break;
case TargetLowering::TypeScalarizeVector:
// Convert the element to an integer and promote it by hand.
if (!NOutVT.isVector())
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
BitConvertToInteger(GetScalarizedVector(InOp)));
break;
case TargetLowering::TypeSplitVector: {
// For example, i32 = BITCAST v2i16 on alpha. Convert the split
// pieces of the input into integers and reassemble in the final type.
SDValue Lo, Hi;
GetSplitVector(N->getOperand(0), Lo, Hi);
Lo = BitConvertToInteger(Lo);
Hi = BitConvertToInteger(Hi);
if (TLI.isBigEndian())
std::swap(Lo, Hi);
InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
EVT::getIntegerVT(*DAG.getContext(),
NOutVT.getSizeInBits()),
JoinIntegers(Lo, Hi));
return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
}
case TargetLowering::TypeWidenVector:
// The input is widened to the same size. Convert to the widened value.
// Make sure that the outgoing value is not a vector, because this would
// make us bitcast between two vectors which are legalized in different ways.
if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector())
return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
}
return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
CreateStackStoreLoad(InOp, OutVT));
}
SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
SDLoc dl(N);
unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits();
return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
}
SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
// The pair element type may be legal, or may not promote to the same type as
// the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases.
return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N),
TLI.getTypeToTransformTo(*DAG.getContext(),
N->getValueType(0)), JoinIntegers(N->getOperand(0),
N->getOperand(1)));
}
SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
EVT VT = N->getValueType(0);
// FIXME there is no actual debug info here
SDLoc dl(N);
// Zero extend things like i1, sign extend everything else. It shouldn't
// matter in theory which one we pick, but this tends to give better code?
unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
SDValue Result = DAG.getNode(Opc, dl,
TLI.getTypeToTransformTo(*DAG.getContext(), VT),
SDValue(N, 0));
assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
return Result;
}
SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
"can only promote integers");
EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getConvertRndSat(OutVT, SDLoc(N), N->getOperand(0),
N->getOperand(1), N->getOperand(2),
N->getOperand(3), N->getOperand(4), CvtCode);
}
SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
// Zero extend to the promoted type and do the count there.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
SDLoc dl(N);
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
// Subtract off the extra leading bits in the bigger type.
return DAG.getNode(
ISD::SUB, dl, NVT, Op,
DAG.getConstant(NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(),
NVT));
}
SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
// Zero extend to the promoted type and do the count there.
SDValue Op = ZExtPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::CTPOP, SDLoc(N), Op.getValueType(), Op);
}
SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
EVT OVT = N->getValueType(0);
EVT NVT = Op.getValueType();
SDLoc dl(N);
if (N->getOpcode() == ISD::CTTZ) {
// The count is the same in the promoted type except if the original
// value was zero. This can be handled by setting the bit just off
// the top of the original type.
auto TopBit = APInt::getOneBitSet(NVT.getScalarSizeInBits(),
OVT.getScalarSizeInBits());
Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
}
return DAG.getNode(N->getOpcode(), dl, NVT, Op);
}
SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
SDLoc dl(N);
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
unsigned NewOpc = N->getOpcode();
SDLoc dl(N);
// If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
// not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT
// and SINT conversions are Custom, there is no way to tell which is
// preferable. We choose SINT because that's the right thing on PPC.)
if (N->getOpcode() == ISD::FP_TO_UINT &&
!TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
NewOpc = ISD::FP_TO_SINT;
SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
// Assert that the converted value fits in the original type. If it doesn't
// (eg: because the value being converted is too big), then the result of the
// original operation was undefined anyway, so the assert is still correct.
return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
DAG.getValueType(N->getValueType(0).getScalarType()));
}
SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_FP16(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
return DAG.getNode(ISD::AssertZext, dl,
NVT, Res, DAG.getValueType(N->getValueType(0)));
}
SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDLoc dl(N);
if (getTypeAction(N->getOperand(0).getValueType())
== TargetLowering::TypePromoteInteger) {
SDValue Res = GetPromotedInteger(N->getOperand(0));
assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
// If the result and operand types are the same after promotion, simplify
// to an in-register extension.
if (NVT == Res.getValueType()) {
// The high bits are not guaranteed to be anything. Insert an extend.
if (N->getOpcode() == ISD::SIGN_EXTEND)
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
DAG.getValueType(N->getOperand(0).getValueType()));
if (N->getOpcode() == ISD::ZERO_EXTEND)
return DAG.getZeroExtendInReg(Res, dl,
N->getOperand(0).getValueType().getScalarType());
assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
return Res;
}
}
// Otherwise, just extend the original operand all the way to the larger type.
return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
}
SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
ISD::LoadExtType ExtType =
ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
SDLoc dl(N);
SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
N->getMemoryVT(), N->getMemOperand());
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_MLOAD(MaskedLoadSDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue ExtSrc0 = GetPromotedInteger(N->getSrc0());
SDValue Mask = N->getMask();
EVT NewMaskVT = getSetCCResultType(NVT);
if (NewMaskVT != N->getMask().getValueType())
Mask = PromoteTargetBoolean(Mask, NewMaskVT);
SDLoc dl(N);
SDValue Res = DAG.getMaskedLoad(NVT, dl, N->getChain(), N->getBasePtr(),
Mask, ExtSrc0, N->getMemoryVT(),
N->getMemOperand(), ISD::SEXTLOAD);
// Legalized the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
return Res;
}
/// Promote the overflow flag of an overflowing arithmetic node.
SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
// Simply change the return type of the boolean result.
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
EVT ValueVTs[] = { N->getValueType(0), NVT };
SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
SDValue Res = DAG.getNode(N->getOpcode(), SDLoc(N),
DAG.getVTList(ValueVTs), Ops);
// Modified the sum result - switch anything that used the old sum to use
// the new one.
ReplaceValueWith(SDValue(N, 0), Res);
return SDValue(Res.getNode(), 1);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
// The operation overflowed iff the result in the larger type is not the
// sign extension of its truncation to the original type.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = SExtPromotedInteger(N->getOperand(1));
EVT OVT = N->getOperand(0).getValueType();
EVT NVT = LHS.getValueType();
SDLoc dl(N);
// Do the arithmetic in the larger type.
unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
// Calculate the overflow flag: sign extend the arithmetic result from
// the original type.
SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
DAG.getValueType(OVT));
// Overflowed if and only if this is not equal to Res.
Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
// Use the calculated overflow everywhere.
ReplaceValueWith(SDValue(N, 1), Ofl);
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
// Sign extend the input.
SDValue LHS = SExtPromotedInteger(N->getOperand(0));
SDValue RHS = SExtPromotedInteger(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
SDValue LHS = GetPromotedInteger(N->getOperand(1));
SDValue RHS = GetPromotedInteger(N->getOperand(2));
return DAG.getSelect(SDLoc(N),
LHS.getValueType(), N->getOperand(0), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
SDValue Mask = N->getOperand(0);
EVT OpTy = N->getOperand(1).getValueType();
// Promote all the way up to the canonical SetCC type.
Mask = PromoteTargetBoolean(Mask, OpTy);
SDValue LHS = GetPromotedInteger(N->getOperand(1));
SDValue RHS = GetPromotedInteger(N->getOperand(2));
return DAG.getNode(ISD::VSELECT, SDLoc(N),
LHS.getValueType(), Mask, LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
SDValue LHS = GetPromotedInteger(N->getOperand(2));
SDValue RHS = GetPromotedInteger(N->getOperand(3));
return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
LHS.getValueType(), N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4));
}
SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
EVT SVT = getSetCCResultType(N->getOperand(0).getValueType());
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
// Only use the result of getSetCCResultType if it is legal,
// otherwise just use the promoted result type (NVT).
if (!TLI.isTypeLegal(SVT))
SVT = NVT;
SDLoc dl(N);
assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
"Vector compare must return a vector result!");
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getValueType() != RHS.getValueType()) {
if (getTypeAction(LHS.getValueType()) == TargetLowering::TypePromoteInteger &&
!LHS.getValueType().isVector())
LHS = GetPromotedInteger(LHS);
if (getTypeAction(RHS.getValueType()) == TargetLowering::TypePromoteInteger &&
!RHS.getValueType().isVector())
RHS = GetPromotedInteger(RHS);
}
// Get the SETCC result using the canonical SETCC type.
SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, LHS, RHS,
N->getOperand(2));
assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
// Convert to the expected type.
return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
SDValue Res = GetPromotedInteger(N->getOperand(0));
SDValue Amt = N->getOperand(1);
Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
return DAG.getNode(ISD::SHL, SDLoc(N), Res.getValueType(), Res, Amt);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N),
Op.getValueType(), Op, N->getOperand(1));
}
SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
// The input may have strange things in the top bits of the registers, but
// these operations don't care. They may have weird bits going out, but
// that too is okay if they are integer operations.
SDValue LHS = GetPromotedInteger(N->getOperand(0));
SDValue RHS = GetPromotedInteger(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
// The input value must be properly sign extended.
SDValue Res = SExtPromotedInteger(N->getOperand(0));
SDValue Amt = N->getOperand(1);
Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
return DAG.getNode(ISD::SRA, SDLoc(N), Res.getValueType(), Res, Amt);
}
SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
// The input value must be properly zero extended.
SDValue Res = ZExtPromotedInteger(N->getOperand(0));
SDValue Amt = N->getOperand(1);
Amt = Amt.getValueType().isVector() ? ZExtPromotedInteger(Amt) : Amt;
return DAG.getNode(ISD::SRL, SDLoc(N), Res.getValueType(), Res, Amt);
}
SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res;
SDValue InOp = N->getOperand(0);
SDLoc dl(N);
switch (getTypeAction(InOp.getValueType())) {
default: llvm_unreachable("Unknown type action!");
case TargetLowering::TypeLegal:
case TargetLowering::TypeExpandInteger:
Res = InOp;
break;
case TargetLowering::TypePromoteInteger:
Res = GetPromotedInteger(InOp);
break;
case TargetLowering::TypeSplitVector:
EVT InVT = InOp.getValueType();
assert(InVT.isVector() && "Cannot split scalar types");
unsigned NumElts = InVT.getVectorNumElements();
assert(NumElts == NVT.getVectorNumElements() &&
"Dst and Src must have the same number of elements");
assert(isPowerOf2_32(NumElts) &&
"Promoted vector type must be a power of two");
SDValue EOp1, EOp2;
GetSplitVector(InOp, EOp1, EOp2);
EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
NumElts/2);
EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
}
// Truncate to NVT instead of VT
return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
}
SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
// The operation overflowed iff the result in the larger type is not the
// zero extension of its truncation to the original type.
SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
EVT OVT = N->getOperand(0).getValueType();
EVT NVT = LHS.getValueType();
SDLoc dl(N);
// Do the arithmetic in the larger type.
unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
// Calculate the overflow flag: zero extend the arithmetic result from
// the original type.
SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
// Overflowed if and only if this is not equal to Res.
Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
// Use the calculated overflow everywhere.
ReplaceValueWith(SDValue(N, 1), Ofl);
return Res;
}
SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
// Promote the overflow bit trivially.
if (ResNo == 1)
return PromoteIntRes_Overflow(N);
SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
SDLoc DL(N);
EVT SmallVT = LHS.getValueType();
// To determine if the result overflowed in a larger type, we extend the
// input to the larger type, do the multiply (checking if it overflows),
// then also check the high bits of the result to see if overflow happened
// there.
if (N->getOpcode() == ISD::SMULO) {
LHS = SExtPromotedInteger(LHS);
RHS = SExtPromotedInteger(RHS);
} else {
LHS = ZExtPromotedInteger(LHS);
RHS = ZExtPromotedInteger(RHS);
}
SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1));
SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS);
// Overflow occurred if it occurred in the larger type, or if the high part
// of the result does not zero/sign-extend the low part. Check this second
// possibility first.
SDValue Overflow;
if (N->getOpcode() == ISD::UMULO) {
// Unsigned overflow occurred if the high part is non-zero.
SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
DAG.getIntPtrConstant(SmallVT.getSizeInBits()));
Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
DAG.getConstant(0, Hi.getValueType()), ISD::SETNE);
} else {
// Signed overflow occurred if the high part does not sign extend the low.
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
Mul, DAG.getValueType(SmallVT));
Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
}
// The only other way for overflow to occur is if the multiplication in the
// larger type itself overflowed.
Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow,
SDValue(Mul.getNode(), 1));
// Use the calculated overflow everywhere.
ReplaceValueWith(SDValue(N, 1), Overflow);
return Mul;
}
SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
// Zero extend the input.
SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
return DAG.getNode(N->getOpcode(), SDLoc(N),
LHS.getValueType(), LHS, RHS);
}
SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
N->getValueType(0)));
}
SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
SDValue Chain = N->getOperand(0); // Get the chain.
SDValue Ptr = N->getOperand(1); // Get the pointer.
EVT VT = N->getValueType(0);
SDLoc dl(N);
MVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
// The argument is passed as NumRegs registers of type RegVT.
SmallVector<SDValue, 8> Parts(NumRegs);
for (unsigned i = 0; i < NumRegs; ++i) {
Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
N->getConstantOperandVal(3));
Chain = Parts[i].getValue(1);
}
// Handle endianness of the load.
if (TLI.isBigEndian())
std::reverse(Parts.begin(), Parts.end());
// Assemble the parts in the promoted type.
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
for (unsigned i = 1; i < NumRegs; ++i) {
SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
// Shift it to the right position and "or" it in.
Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
DAG.getConstant(i * RegVT.getSizeInBits(),
TLI.getPointerTy()));
Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
}
// Modified the chain result - switch anything that used the old chain to
// use the new one.
ReplaceValueWith(SDValue(N, 1), Chain);
return Res;
}
//===----------------------------------------------------------------------===//
// Integer Operand Promotion
//===----------------------------------------------------------------------===//
/// PromoteIntegerOperand - This method is called when the specified operand of
/// the specified node is found to need promotion. At this point, all of the
/// result types of the node are known to be legal, but other operands of the
/// node may need promotion or expansion as well as the specified one.
bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
SDValue Res = SDValue();
if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
return false;
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
N->dump(&DAG); dbgs() << "\n";
#endif
llvm_unreachable("Do not know how to promote this operator's operand!");
case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break;
case ISD::ATOMIC_STORE:
Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
break;
case ISD::BITCAST: Res = PromoteIntOp_BITCAST(N); break;
case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break;
case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break;
case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break;
case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
case ISD::CONVERT_RNDSAT:
Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
case ISD::INSERT_VECTOR_ELT:
Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
case ISD::SCALAR_TO_VECTOR:
Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
case ISD::VSELECT:
case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break;
case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break;
case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break;
case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break;
case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
OpNo); break;
case ISD::MSTORE: Res = PromoteIntOp_MSTORE(cast<MaskedStoreSDNode>(N),
OpNo); break;
case ISD::MLOAD: Res = PromoteIntOp_MLOAD(cast<MaskedLoadSDNode>(N),
OpNo); break;
case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break;
case ISD::FP16_TO_FP:
case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break;
case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
}
// If the result is null, the sub-method took care of registering results etc.
if (!Res.getNode()) return false;
// If the result is N, the sub-method updated N in place. Tell the legalizer
// core about this.
if (Res.getNode() == N)
return true;
assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
"Invalid operand expansion");
ReplaceValueWith(SDValue(N, 0), Res);
return false;
}
/// PromoteSetCCOperands - Promote the operands of a comparison. This code is
/// shared among BR_CC, SELECT_CC, and SETCC handlers.
void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
ISD::CondCode CCCode) {
// We have to insert explicit sign or zero extends. Note that we could
// insert sign extends for ALL conditions, but zero extend is cheaper on
// many machines (an AND instead of two shifts), so prefer it.
switch (CCCode) {
default: llvm_unreachable("Unknown integer comparison!");
case ISD::SETEQ:
case ISD::SETNE: {
SDValue OpL = GetPromotedInteger(NewLHS);
SDValue OpR = GetPromotedInteger(NewRHS);
// We would prefer to promote the comparison operand with sign extension,
// if we find the operand is actually to truncate an AssertSext. With this
// optimization, we can avoid inserting real truncate instruction, which
// is redudant eventually.
if (OpL->getOpcode() == ISD::AssertSext &&
cast<VTSDNode>(OpL->getOperand(1))->getVT() == NewLHS.getValueType() &&
OpR->getOpcode() == ISD::AssertSext &&
cast<VTSDNode>(OpR->getOperand(1))->getVT() == NewRHS.getValueType()) {
NewLHS = OpL;
NewRHS = OpR;
} else {
NewLHS = ZExtPromotedInteger(NewLHS);
NewRHS = ZExtPromotedInteger(NewRHS);
}
break;
}
case ISD::SETUGE:
case ISD::SETUGT:
case ISD::SETULE:
case ISD::SETULT:
// ALL of these operations will work if we either sign or zero extend
// the operands (including the unsigned comparisons!). Zero extend is
// usually a simpler/cheaper operation, so prefer it.
NewLHS = ZExtPromotedInteger(NewLHS);
NewRHS = ZExtPromotedInteger(NewRHS);
break;
case ISD::SETGE:
case ISD::SETGT:
case ISD::SETLT:
case ISD::SETLE:
NewLHS = SExtPromotedInteger(NewLHS);
NewRHS = SExtPromotedInteger(NewRHS);
break;
}
}
SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
SDValue Op = GetPromotedInteger(N->getOperand(0));
return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), Op);
}
SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
SDValue Op2 = GetPromotedInteger(N->getOperand(2));
return DAG.getAtomic(N->getOpcode(), SDLoc(N), N->getMemoryVT(),
N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(),
N->getOrdering(), N->getSynchScope());
}
SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
// This should only occur in unusual situations like bitcasting to an
// x86_fp80, so just turn it into a store+load
return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
}
SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
assert(OpNo == 2 && "Don't know how to promote this operand!");
SDValue LHS = N->getOperand(2);
SDValue RHS = N->getOperand(3);
PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
// The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
// legal types.
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
N->getOperand(1), LHS, RHS, N->getOperand(4)),
0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
assert(OpNo == 1 && "only know how to promote condition");
// Promote all the way up to the canonical SetCC type.
SDValue Cond = PromoteTargetBoolean(N->getOperand(1), MVT::Other);
// The chain (Op#0) and basic block destination (Op#2) are always legal types.
return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
N->getOperand(2)), 0);
}
SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
// Since the result type is legal, the operands must promote to it.
EVT OVT = N->getOperand(0).getValueType();
SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
SDValue Hi = GetPromotedInteger(N->getOperand(1));
assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
SDLoc dl(N);
Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy()));
return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
}
SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
// The vector type is legal but the element type is not. This implies
// that the vector is a power-of-two in length and that the element
// type does not have a strange size (eg: it is not i1).
EVT VecVT = N->getValueType(0);
unsigned NumElts = VecVT.getVectorNumElements();
assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) &&
"Legal vector of one illegal element?");
// Promote the inserted value. The type does not need to match the
// vector element type. Check that any extra bits introduced will be
// truncated away.
assert(N->getOperand(0).getValueType().getSizeInBits() >=
N->getValueType(0).getVectorElementType().getSizeInBits() &&
"Type of inserted value narrower than vector element type!");
SmallVector<SDValue, 16> NewOps;