''' Created on Jul 21, 2016 This is an axample of a neural network. It uses the Handprint data set. This is almost, but not quite, the same as the MNIST handwritten digits database. from Python Machine Learning by Sebastian Raschka under the following license The MIT License (MIT) Copyright (c) 2015, 2016 SEBASTIAN RASCHKA (mail@sebastianraschka.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. @author: richard lyman ''' import numpy as np import ocr_utils import matplotlib.pyplot as plt from scipy.special import expit import sys chars_to_train = range(48,58) input_filters_dict = {'m_label': chars_to_train, 'font': 'HANDPRINT'} # output the character label and the image and column sums output_feature_list = ['m_label','image'] # read the complete image (20x20) = 400 pixels for each character ds = ocr_utils.read_data(input_filters_dict=input_filters_dict, output_feature_list=output_feature_list, test_size=.2, random_state=0) y_train = ds.train.features[0]-48 X_train = ds.train.features[1] y_test = ds.test.features[0]-48 X_test = ds.test.features[1] labels = np.unique(y_train) fig, ax = plt.subplots(nrows=2, ncols=5, sharex=True, sharey=True,) ax = ax.flatten() X2D = np.reshape(X_train,(X_train.shape[0],ds.train.num_rows, ds.train.num_columns)) for i, label in enumerate(labels): img = X2D[y_train == label][i] ax[i].imshow(img, cmap='Greys', interpolation='nearest') ax[0].set_xticks([]) ax[0].set_yticks([]) plt.tight_layout() title= 'mnist all' ocr_utils.show_figures(plt, title) fig, ax = plt.subplots(nrows=5, ncols=5, sharex=True, sharey=True,) ax = ax.flatten() for i in range(25): img = X2D[y_train == labels[7]][i] ax[i].imshow(img, cmap='Greys', interpolation='nearest') ax[0].set_xticks([]) ax[0].set_yticks([]) plt.tight_layout() title = 'mnist_7' ocr_utils.show_figures(plt, title) class NeuralNetMLP(object): """ Feedforward neural network / Multi-layer perceptron classifier. Parameters ------------ n_output : int Number of output units, should be equal to the number of unique class labels. n_features : int Number of features (dimensions) in the target dataset. Should be equal to the number of columns in the X array. n_hidden : int (default: 30) Number of hidden units. l1 : float (default: 0.0) Lambda value for L1-regularization. No regularization if l1=0.0 (default) l2 : float (default: 0.0) Lambda value for L2-regularization. No regularization if l2=0.0 (default) epochs : int (default: 500) Number of passes over the training set. eta : float (default: 0.001) Learning rate. alpha : float (default: 0.0) Momentum constant. Factor multiplied with the gradient of the previous epoch t-1 to improve learning speed w(t) := w(t) - (grad(t) + alpha*grad(t-1)) decrease_const : float (default: 0.0) Decrease constant. Shrinks the learning rate after each epoch via eta / (1 + epoch*decrease_const) shuffle : bool (default: False) Shuffles training data every epoch if True to prevent circles. minibatches : int (default: 1) Divides training data into k minibatches for efficiency. Normal gradient descent learning if k=1 (default). random_state : int (default: None) Set random state for shuffling and initializing the weights. Attributes ----------- cost_ : list Sum of squared errors after each epoch. """ def __init__(self, n_output, n_features, n_hidden=30, l1=0.0, l2=0.0, epochs=500, eta=0.001, alpha=0.0, decrease_const=0.0, shuffle=True, minibatches=1, random_state=None): np.random.seed(random_state) self.n_output = n_output self.n_features = n_features self.n_hidden = n_hidden self.w1, self.w2 = self._initialize_weights() self.l1 = l1 self.l2 = l2 self.epochs = epochs self.eta = eta self.alpha = alpha self.decrease_const = decrease_const self.shuffle = shuffle self.minibatches = minibatches def _encode_labels(self, y, k): """Encode labels into one-hot representation Parameters ------------ y : array, shape = [n_samples] Target values. Returns ----------- onehot : array, shape = (n_labels, n_samples) """ onehot = np.zeros((k, y.shape[0])) for idx, val in enumerate(y): onehot[val, idx] = 1.0 return onehot def _initialize_weights(self): """Initialize weights with small random numbers.""" w1 = np.random.uniform(-1.0, 1.0, size=self.n_hidden*(self.n_features + 1)) w1 = w1.reshape(self.n_hidden, self.n_features + 1) w2 = np.random.uniform(-1.0, 1.0, size=self.n_output*(self.n_hidden + 1)) w2 = w2.reshape(self.n_output, self.n_hidden + 1) return w1, w2 def _sigmoid(self, z): """Compute logistic function (sigmoid) Uses scipy.special.expit to avoid overflow error for very small input values z. """ # return 1.0 / (1.0 + np.exp(-z)) return expit(z) def _sigmoid_gradient(self, z): """Compute gradient of the logistic function""" sg = self._sigmoid(z) return sg * (1 - sg) def _add_bias_unit(self, X, how='column'): """Add bias unit (column or row of 1s) to array at index 0""" if how == 'column': X_new = np.ones((X.shape[0], X.shape[1]+1)) X_new[:, 1:] = X elif how == 'row': X_new = np.ones((X.shape[0]+1, X.shape[1])) X_new[1:, :] = X else: raise AttributeError('`how` must be `column` or `row`') return X_new def _feedforward(self, X, w1, w2): """Compute feedforward step Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns ---------- a1 : array, shape = [n_samples, n_features+1] Input values with bias unit. z2 : array, shape = [n_hidden, n_samples] Net input of hidden layer. a2 : array, shape = [n_hidden+1, n_samples] Activation of hidden layer. z3 : array, shape = [n_output_units, n_samples] Net input of output layer. a3 : array, shape = [n_output_units, n_samples] Activation of output layer. """ a1 = self._add_bias_unit(X, how='column') z2 = w1.dot(a1.T) a2 = self._sigmoid(z2) a2 = self._add_bias_unit(a2, how='row') z3 = w2.dot(a2) a3 = self._sigmoid(z3) return a1, z2, a2, z3, a3 def _L2_reg(self, lambda_, w1, w2): """Compute L2-regularization cost""" return (lambda_/2.0) * (np.sum(w1[:, 1:] ** 2) + np.sum(w2[:, 1:] ** 2)) def _L1_reg(self, lambda_, w1, w2): """Compute L1-regularization cost""" return (lambda_/2.0) * (np.abs(w1[:, 1:]).sum() + np.abs(w2[:, 1:]).sum()) def _get_cost(self, y_enc, output, w1, w2): """Compute cost function. y_enc : array, shape = (n_labels, n_samples) one-hot encoded class labels. output : array, shape = [n_output_units, n_samples] Activation of the output layer (feedforward) w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns --------- cost : float Regularized cost. """ term1 = -y_enc * (np.log(output)) term2 = (1 - y_enc) * np.log(1 - output) cost = np.sum(term1 - term2) L1_term = self._L1_reg(self.l1, w1, w2) L2_term = self._L2_reg(self.l2, w1, w2) cost = cost + L1_term + L2_term return cost def _get_gradient(self, a1, a2, a3, z2, y_enc, w1, w2): """ Compute gradient step using backpropagation. Parameters ------------ a1 : array, shape = [n_samples, n_features+1] Input values with bias unit. a2 : array, shape = [n_hidden+1, n_samples] Activation of hidden layer. a3 : array, shape = [n_output_units, n_samples] Activation of output layer. z2 : array, shape = [n_hidden, n_samples] Net input of hidden layer. y_enc : array, shape = (n_labels, n_samples) one-hot encoded class labels. w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns --------- grad1 : array, shape = [n_hidden_units, n_features] Gradient of the weight matrix w1. grad2 : array, shape = [n_output_units, n_hidden_units] Gradient of the weight matrix w2. """ # backpropagation sigma3 = a3 - y_enc z2 = self._add_bias_unit(z2, how='row') sigma2 = w2.T.dot(sigma3) * self._sigmoid_gradient(z2) sigma2 = sigma2[1:, :] grad1 = sigma2.dot(a1) grad2 = sigma3.dot(a2.T) # regularize grad1[:, 1:] += (w1[:, 1:] * (self.l1 + self.l2)) grad2[:, 1:] += (w2[:, 1:] * (self.l1 + self.l2)) return grad1, grad2 def predict(self, X): """Predict class labels Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. Returns: ---------- y_pred : array, shape = [n_samples] Predicted class labels. """ if len(X.shape) != 2: raise AttributeError('X must be a [n_samples, n_features] array.\n' 'Use X[:,None] for 1-feature classification,' '\nor X[[i]] for 1-sample classification') a1, z2, a2, z3, a3 = self._feedforward(X, self.w1, self.w2) y_pred = np.argmax(z3, axis=0) return y_pred def fit(self, X, y, print_progress=False): """ Learn weights from training data. Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. y : array, shape = [n_samples] Target class labels. print_progress : bool (default: False) Prints progress as the number of epochs to stderr. Returns: ---------- self """ self.cost_ = [] X_data, y_data = X.copy(), y.copy() y_enc = self._encode_labels(y, self.n_output) delta_w1_prev = np.zeros(self.w1.shape) delta_w2_prev = np.zeros(self.w2.shape) for i in range(self.epochs): # adaptive learning rate self.eta /= (1 + self.decrease_const*i) if print_progress: sys.stderr.write('\rEpoch: %d/%d' % (i+1, self.epochs)) sys.stderr.flush() if self.shuffle: idx = np.random.permutation(y_data.shape[0]) X_data, y_data = X_data[idx], y_data[idx] mini = np.array_split(range(y_data.shape[0]), self.minibatches) for idx in mini: # feedforward a1, z2, a2, z3, a3 = self._feedforward(X[idx], self.w1, self.w2) cost = self._get_cost(y_enc=y_enc[:, idx], output=a3, w1=self.w1, w2=self.w2) self.cost_.append(cost) # compute gradient via backpropagation grad1, grad2 = self._get_gradient(a1=a1, a2=a2, a3=a3, z2=z2, y_enc=y_enc[:, idx], w1=self.w1, w2=self.w2) delta_w1, delta_w2 = self.eta * grad1, self.eta * grad2 self.w1 -= (delta_w1 + (self.alpha * delta_w1_prev)) self.w2 -= (delta_w2 + (self.alpha * delta_w2_prev)) delta_w1_prev, delta_w2_prev = delta_w1, delta_w2 return self nn = NeuralNetMLP(n_output=len(labels), n_features=X_train.shape[1], n_hidden=50, l2=0.1, l1=0.0, epochs=100, eta=0.001, alpha=0.001, decrease_const=0.00001, minibatches=50, random_state=1) nn.fit(X_train, y_train, print_progress=True) plt.plot(range(len(nn.cost_)), nn.cost_) plt.ylim([0, 2000]) plt.ylabel('Cost') plt.xlabel('Epochs * 50') plt.tight_layout() title = 'cost' plt.title(title) ocr_utils.show_figures(plt,title ) batches = np.array_split(range(len(nn.cost_)), 1000) cost_ary = np.array(nn.cost_) cost_avgs = [np.mean(cost_ary[i]) for i in batches] plt.plot(range(len(cost_avgs)), cost_avgs, color='red') plt.ylim([0, 2000]) plt.ylabel('Cost') plt.xlabel('Epochs') plt.tight_layout() title = 'cost2' plt.title(title) ocr_utils.show_figures(plt, title) y_train_pred = nn.predict(X_train) acc = np.sum(y_train == y_train_pred, axis=0) / X_train.shape[0] print('Training accuracy: %.5f%%' % (acc * 100)) y_test_pred = nn.predict(X_test) acc = np.sum(y_test == y_test_pred, axis=0) / X_test.shape[0] print('test accuracy: %.5f%%' % (acc * 100)) miscl_img = X_test[y_test != y_test_pred][:25] nError = miscl_img.shape[0] miscl_img = np.reshape(miscl_img,(nError,ds.train.num_rows, ds.train.num_columns)) correct_lab = y_test[y_test != y_test_pred][:nError] miscl_lab= y_test_pred[y_test != y_test_pred][:nError] fig, ax = plt.subplots(nrows=5, ncols=5, sharex=True, sharey=True,) ax = ax.flatten() for i in range(nError): img = miscl_img[i] ax[i].imshow(img, cmap='Greys', interpolation='nearest') ax[i].set_title('%d) t: %d p: %d' % (i+1, correct_lab[i], miscl_lab[i])) ax[0].set_xticks([]) ax[0].set_yticks([]) plt.tight_layout() title = 'mnist_miscl' ocr_utils.show_figures(plt, title) class MLPGradientCheck(object): """ Feedforward neural network / Multi-layer perceptron classifier. Parameters ------------ n_output : int Number of output units, should be equal to the number of unique class labels. n_features : int Number of features (dimensions) in the target dataset. Should be equal to the number of columns in the X array. n_hidden : int (default: 30) Number of hidden units. l1 : float (default: 0.0) Lambda value for L1-regularization. No regularization if l1=0.0 (default) l2 : float (default: 0.0) Lambda value for L2-regularization. No regularization if l2=0.0 (default) epochs : int (default: 500) Number of passes over the training set. eta : float (default: 0.001) Learning rate. alpha : float (default: 0.0) Momentum constant. Factor multiplied with the gradient of the previous epoch t-1 to improve learning speed w(t) := w(t) - (grad(t) + alpha*grad(t-1)) decrease_const : float (default: 0.0) Decrease constant. Shrinks the learning rate after each epoch via eta / (1 + epoch*decrease_const) shuffle : bool (default: False) Shuffles training data every epoch if True to prevent circles. minibatches : int (default: 1) Divides training data into k minibatches for efficiency. Normal gradient descent learning if k=1 (default). random_state : int (default: None) Set random state for shuffling and initializing the weights. Attributes ----------- cost_ : list Sum of squared errors after each epoch. """ def __init__(self, n_output, n_features, n_hidden=30, l1=0.0, l2=0.0, epochs=500, eta=0.001, alpha=0.0, decrease_const=0.0, shuffle=True, minibatches=1, random_state=None): np.random.seed(random_state) self.n_output = n_output self.n_features = n_features self.n_hidden = n_hidden self.w1, self.w2 = self._initialize_weights() self.l1 = l1 self.l2 = l2 self.epochs = epochs self.eta = eta self.alpha = alpha self.decrease_const = decrease_const self.shuffle = shuffle self.minibatches = minibatches def _encode_labels(self, y, k): """Encode labels into one-hot representation Parameters ------------ y : array, shape = [n_samples] Target values. Returns ----------- onehot : array, shape = (n_labels, n_samples) """ onehot = np.zeros((k, y.shape[0])) for idx, val in enumerate(y): onehot[val, idx] = 1.0 return onehot def _initialize_weights(self): """Initialize weights with small random numbers.""" w1 = np.random.uniform(-1.0, 1.0, size=self.n_hidden*(self.n_features + 1)) w1 = w1.reshape(self.n_hidden, self.n_features + 1) w2 = np.random.uniform(-1.0, 1.0, size=self.n_output*(self.n_hidden + 1)) w2 = w2.reshape(self.n_output, self.n_hidden + 1) return w1, w2 def _sigmoid(self, z): """Compute logistic function (sigmoid) Uses scipy.special.expit to avoid overflow error for very small input values z. """ # return 1.0 / (1.0 + np.exp(-z)) return expit(z) def _sigmoid_gradient(self, z): """Compute gradient of the logistic function""" sg = self._sigmoid(z) return sg * (1 - sg) def _add_bias_unit(self, X, how='column'): """Add bias unit (column or row of 1s) to array at index 0""" if how == 'column': X_new = np.ones((X.shape[0], X.shape[1]+1)) X_new[:, 1:] = X elif how == 'row': X_new = np.ones((X.shape[0]+1, X.shape[1])) X_new[1:, :] = X else: raise AttributeError('`how` must be `column` or `row`') return X_new def _feedforward(self, X, w1, w2): """Compute feedforward step Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns ---------- a1 : array, shape = [n_samples, n_features+1] Input values with bias unit. z2 : array, shape = [n_hidden, n_samples] Net input of hidden layer. a2 : array, shape = [n_hidden+1, n_samples] Activation of hidden layer. z3 : array, shape = [n_output_units, n_samples] Net input of output layer. a3 : array, shape = [n_output_units, n_samples] Activation of output layer. """ a1 = self._add_bias_unit(X, how='column') z2 = w1.dot(a1.T) a2 = self._sigmoid(z2) a2 = self._add_bias_unit(a2, how='row') z3 = w2.dot(a2) a3 = self._sigmoid(z3) return a1, z2, a2, z3, a3 def _L2_reg(self, lambda_, w1, w2): """Compute L2-regularization cost""" return (lambda_/2.0) * (np.sum(w1[:, 1:] ** 2) + np.sum(w2[:, 1:] ** 2)) def _L1_reg(self, lambda_, w1, w2): """Compute L1-regularization cost""" return (lambda_/2.0) * (np.abs(w1[:, 1:]).sum() + np.abs(w2[:, 1:]).sum()) def _get_cost(self, y_enc, output, w1, w2): """Compute cost function. y_enc : array, shape = (n_labels, n_samples) one-hot encoded class labels. output : array, shape = [n_output_units, n_samples] Activation of the output layer (feedforward) w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns --------- cost : float Regularized cost. """ term1 = -y_enc * (np.log(output)) term2 = (1 - y_enc) * np.log(1 - output) cost = np.sum(term1 - term2) L1_term = self._L1_reg(self.l1, w1, w2) L2_term = self._L2_reg(self.l2, w1, w2) cost = cost + L1_term + L2_term return cost def _get_gradient(self, a1, a2, a3, z2, y_enc, w1, w2): """ Compute gradient step using backpropagation. Parameters ------------ a1 : array, shape = [n_samples, n_features+1] Input values with bias unit. a2 : array, shape = [n_hidden+1, n_samples] Activation of hidden layer. a3 : array, shape = [n_output_units, n_samples] Activation of output layer. z2 : array, shape = [n_hidden, n_samples] Net input of hidden layer. y_enc : array, shape = (n_labels, n_samples) one-hot encoded class labels. w1 : array, shape = [n_hidden_units, n_features] Weight matrix for input layer -> hidden layer. w2 : array, shape = [n_output_units, n_hidden_units] Weight matrix for hidden layer -> output layer. Returns --------- grad1 : array, shape = [n_hidden_units, n_features] Gradient of the weight matrix w1. grad2 : array, shape = [n_output_units, n_hidden_units] Gradient of the weight matrix w2. """ # backpropagation sigma3 = a3 - y_enc z2 = self._add_bias_unit(z2, how='row') sigma2 = w2.T.dot(sigma3) * self._sigmoid_gradient(z2) sigma2 = sigma2[1:, :] grad1 = sigma2.dot(a1) grad2 = sigma3.dot(a2.T) # regularize grad1[:, 1:] += (w1[:, 1:] * (self.l1 + self.l2)) grad2[:, 1:] += (w2[:, 1:] * (self.l1 + self.l2)) return grad1, grad2 def _gradient_checking(self, X, y_enc, w1, w2, epsilon, grad1, grad2): """ Apply gradient checking (for debugging only) Returns --------- relative_error : float Relative error between the numerically approximated gradients and the backpropagated gradients. """ num_grad1 = np.zeros(np.shape(w1)) epsilon_ary1 = np.zeros(np.shape(w1)) for i in range(w1.shape[0]): for j in range(w1.shape[1]): epsilon_ary1[i, j] = epsilon a1, z2, a2, z3, a3 = self._feedforward(X, w1 - epsilon_ary1, w2) cost1 = self._get_cost(y_enc, a3, w1-epsilon_ary1, w2) a1, z2, a2, z3, a3 = self._feedforward(X, w1 + epsilon_ary1, w2) cost2 = self._get_cost(y_enc, a3, w1 + epsilon_ary1, w2) num_grad1[i, j] = (cost2 - cost1) / (2 * epsilon) epsilon_ary1[i, j] = 0 num_grad2 = np.zeros(np.shape(w2)) epsilon_ary2 = np.zeros(np.shape(w2)) for i in range(w2.shape[0]): for j in range(w2.shape[1]): epsilon_ary2[i, j] = epsilon a1, z2, a2, z3, a3 = self._feedforward(X, w1, w2 - epsilon_ary2) cost1 = self._get_cost(y_enc, a3, w1, w2 - epsilon_ary2) a1, z2, a2, z3, a3 = self._feedforward(X, w1, w2 + epsilon_ary2) cost2 = self._get_cost(y_enc, a3, w1, w2 + epsilon_ary2) num_grad2[i, j] = (cost2 - cost1) / (2 * epsilon) epsilon_ary2[i, j] = 0 num_grad = np.hstack((num_grad1.flatten(), num_grad2.flatten())) grad = np.hstack((grad1.flatten(), grad2.flatten())) norm1 = np.linalg.norm(num_grad - grad) norm2 = np.linalg.norm(num_grad) norm3 = np.linalg.norm(grad) relative_error = norm1 / (norm2 + norm3) return relative_error def predict(self, X): """Predict class labels Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. Returns: ---------- y_pred : array, shape = [n_samples] Predicted class labels. """ if len(X.shape) != 2: raise AttributeError('X must be a [n_samples, n_features] array.\n' 'Use X[:,None] for 1-feature classification,' '\nor X[[i]] for 1-sample classification') a1, z2, a2, z3, a3 = self._feedforward(X, self.w1, self.w2) y_pred = np.argmax(z3, axis=0) return y_pred def fit(self, X, y, print_progress=False): """ Learn weights from training data. Parameters ----------- X : array, shape = [n_samples, n_features] Input layer with original features. y : array, shape = [n_samples] Target class labels. print_progress : bool (default: False) Prints progress as the number of epochs to stderr. Returns: ---------- self """ self.cost_ = [] X_data, y_data = X.copy(), y.copy() y_enc = self._encode_labels(y, self.n_output) delta_w1_prev = np.zeros(self.w1.shape) delta_w2_prev = np.zeros(self.w2.shape) for i in range(self.epochs): # adaptive learning rate self.eta /= (1 + self.decrease_const*i) if print_progress: sys.stderr.write('\rEpoch: %d/%d' % (i+1, self.epochs)) sys.stderr.flush() if self.shuffle: idx = np.random.permutation(y_data.shape[0]) X_data, y_data = X_data[idx], y_data[idx] mini = np.array_split(range(y_data.shape[0]), self.minibatches) for idx in mini: # feedforward a1, z2, a2, z3, a3 = self._feedforward(X[idx], self.w1, self.w2) cost = self._get_cost(y_enc=y_enc[:, idx], output=a3, w1=self.w1, w2=self.w2) self.cost_.append(cost) # compute gradient via backpropagation grad1, grad2 = self._get_gradient(a1=a1, a2=a2, a3=a3, z2=z2, y_enc=y_enc[:, idx], w1=self.w1, w2=self.w2) ## start gradient checking grad_diff = self._gradient_checking(X=X[idx], y_enc=y_enc[:, idx], w1=self.w1, w2=self.w2, epsilon=1e-5, grad1=grad1, grad2=grad2) if grad_diff <= 1e-7: print('Ok: %s' % grad_diff) elif grad_diff <= 1e-4: print('Warning: %s' % grad_diff) else: print('PROBLEM: %s' % grad_diff) # update weights; [alpha * delta_w_prev] for momentum learning delta_w1, delta_w2 = self.eta * grad1, self.eta * grad2 self.w1 -= (delta_w1 + (self.alpha * delta_w1_prev)) self.w2 -= (delta_w2 + (self.alpha * delta_w2_prev)) delta_w1_prev, delta_w2_prev = delta_w1, delta_w2 return self nn_check = MLPGradientCheck(n_output=len(labels), n_features=X_train.shape[1], n_hidden=10, l2=0.0, l1=0.0, epochs=10, eta=0.001, alpha=0.0, decrease_const=0.0, minibatches=1, random_state=1) nn_check.fit(X_train[:5], y_train[:5], print_progress=False) print ('\n########################### No Errors ####################################')