|
| 1 | +"""# ========================================================================== |
| 2 | +
|
| 3 | +# Copyright 2015 Google Inc. All Rights Reserved. |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | +# ============================================================================== |
| 17 | +
|
| 18 | +This sample program is a modified version of the Google mnist convolutional |
| 19 | +network tutorial example. See the mnist tutorial in www.tensorflow.org |
| 20 | +
|
| 21 | +This graph has multiple sections 3 layers each, 400 100 400 followed |
| 22 | +by a fully connected layer. |
| 23 | +
|
| 24 | +see tensor_flow_graph.png |
| 25 | +"""# ============================================================================== |
| 26 | +import ocr_utils |
| 27 | +import datetime |
| 28 | +from collections import namedtuple |
| 29 | +import numpy as np |
| 30 | +import pandas as pd |
| 31 | +import n1_image_to_image as nnetwork |
| 32 | +#import n1_residual3x4 as nnetwork |
| 33 | +import tensorflow as tf |
| 34 | +dtype = np.float32 |
| 35 | +#with tf.device('/GPU:0'): |
| 36 | +#with tf.device('/cpu:0'): |
| 37 | + |
| 38 | + |
| 39 | +if True: |
| 40 | + # single font train |
| 41 | + |
| 42 | + # examples |
| 43 | + # select only images from 'OCRB' scanned font |
| 44 | + # input_filters_dict = {'font': ('OCRA',)} |
| 45 | + |
| 46 | + # select only images from 'HANDPRINT' font |
| 47 | + #input_filters_dict = {'font': ('HANDPRINT',)} |
| 48 | + |
| 49 | + # select only images from 'OCRA' and 'OCRB' fonts with the 'scanned" fontVariant |
| 50 | + # input_filters_dict = {'font': ('OCRA','OCRB'), 'fontVariant':('scanned',)} |
| 51 | + |
| 52 | + # select everything; all fonts , font variants, etc. |
| 53 | + # input_filters_dict = {} |
| 54 | + |
| 55 | + # select the digits 0 through 9 in the E13B font |
| 56 | + # input_filters_dict = {'m_label': range(48,58), 'font': 'E13B'} |
| 57 | + |
| 58 | + # select the digits 0 and 2in the E13B font |
| 59 | + # input_filters_dict = {'m_label': (48,50), 'font': 'E13B'} |
| 60 | + |
| 61 | + # output the character label, image, italic flag, aspect_ratio and upper_case flag |
| 62 | + # output_feature_list = ['m_label_one_hot','image','italic','aspect_ratio','upper_case'] |
| 63 | + |
| 64 | + # output only the character label and the image |
| 65 | + # output_feature_list = ['m_label_one_hot','image'] |
| 66 | + |
| 67 | + # identify the font given the input images |
| 68 | + #output_feature_list = ['font_one_hot','image','italic','aspect_ratio','upper_case'] |
| 69 | + |
| 70 | + # train the digits 0-9 for all fonts |
| 71 | + input_filters_dict = {'m_label': range(48,58),'italic':0,'strength':.4} |
| 72 | + #input_filters_dict = {'font':'BANKGOTHIC','m_label': list(range(48,58)),'italic':0,'strength':.7} |
| 73 | + #input_filters_dict = {} |
| 74 | + output_feature_list = ['low_pass_image','image'] |
| 75 | + |
| 76 | + """# ============================================================================== |
| 77 | + |
| 78 | + Train and Evaluate the Model |
| 79 | + |
| 80 | + """# ============================================================================== |
| 81 | + ds = ocr_utils.read_data(input_filters_dict = input_filters_dict, |
| 82 | + output_feature_list=output_feature_list, |
| 83 | + test_size = .2, |
| 84 | + engine_type='tensorflow',dtype=dtype) |
| 85 | + nn = nnetwork.network(ds.train) |
| 86 | + nn.fit( ds.train, nEpochs=5000) |
| 87 | + nn.test2(ds.test) |
| 88 | + |
| 89 | +# train_a_font(input_filters_dict, output_feature_list, nEpochs = 50000) |
| 90 | + |
| 91 | +else: |
| 92 | + # loop through all the fonts and train individually |
| 93 | + |
| 94 | + # pick up the entire list of fonts and font variants. Train each one. |
| 95 | + df1 = ocr_utils.get_list(input_filters_dict={'font': ()}) |
| 96 | + |
| 97 | + import pprint as pprint |
| 98 | + pp = pprint.PrettyPrinter(indent=4) |
| 99 | + pp.pprint(df1) |
| 100 | + |
| 101 | + output_feature_list = ['m_label_one_hot','image','italic','aspect_ratio','upper_case','font_one_hot'] |
| 102 | + |
| 103 | + # Change nEpochs to 5000 for better results |
| 104 | + for l in df1: |
| 105 | + input_filters_dict= {'font': (l[0],)} |
| 106 | + train_a_font(input_filters_dict,output_feature_list, nEpochs = 5000) |
| 107 | + |
| 108 | + |
| 109 | +print ('\n########################### No Errors ####################################') |
| 110 | + |
0 commit comments