-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathp131_principal_component_analysis.py
238 lines (180 loc) · 9.43 KB
/
p131_principal_component_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
''' principal_component_analysis.py
Principal Component Analysis reduces the dimensionality of the feature set by
sorting the features by the explained variance. It does this by
1) computing a covariance matrix for the features
2) finding the eigenvectors and eigenvalues of the matrix, principal components.
3) computing explained variance for the components and sorting them
Always standardize because PCA is sensitive to scaling
Created on Jul 2, 2016
from Python Machine Learning by Sebastian Raschka under the following license
The MIT License (MIT)
Copyright (c) 2015, 2016 SEBASTIAN RASCHKA (mail@sebastianraschka.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
@author: richard lyman
'''
n_components = 10 # of of pca components to use for final accuracy
import numpy as np
import ocr_utils
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.decomposition import PCA
from sklearn.decomposition import KernelPCA
chars_to_train = range(48,58)
columnsXY=range(0,20)
column_str = 'column_sum{}'.format(list(columnsXY))
input_filters_dict = {'m_label': chars_to_train, 'font': 'E13B'}
# output the character label and the image and column sums
output_feature_list = ['m_label','image',column_str]
# read the complete image (20x20) = 400 pixels for each character
ds = ocr_utils.read_data(input_filters_dict=input_filters_dict,
output_feature_list=output_feature_list,
test_size=.2,
random_state=0)
windows_limit = 5000 # uses too much memory for my 32 bit windows computer so limit size of sample
y_train = ds.train.features[0][:windows_limit]
X_train_image = ds.train.features[1][:windows_limit]
X_train = ds.train.features[2][:windows_limit]
y_test = ds.test.features[0]
X_test_image = ds.test.features[1]
X_test = ds.test.features[2]
cov_mat = np.cov(X_train_image.T)
eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
print('\nEigenvalues \n%s' % eigen_vals[:2*n_components])
tot = sum(eigen_vals)
var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)]
cum_var_exp = np.cumsum(var_exp)
var_exp = var_exp[:20]
cum_var_exp = cum_var_exp[:2*n_components]
title='explained variance'
plt.bar(range(1, len(var_exp)+1), var_exp, alpha=0.5, align='center', label='individual explained variance')
plt.step(range(1, len(cum_var_exp)+1), cum_var_exp, where='mid',
label='cumulative explained variance')
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.legend(loc='best')
plt.tight_layout()
plt.title(title)
ocr_utils.show_figures(plt,title)
# Make a list of (eigenvalue, eigenvector) tuples
eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) for i in range(len(eigen_vals))]
# Sort the (eigenvalue, eigenvector) tuples from high to low
eigen_pairs.sort(reverse=True)
# The eigenpairs with the highest explained variance
w = np.hstack((eigen_pairs[0][1][:, np.newaxis],
eigen_pairs[1][1][:, np.newaxis]))
print('Matrix W:\n', w[:2*n_components,:])
X_train_pca = X_train_image.dot(w)
print ('projection of first dataset sample on first 2 eignvectors {}'.format(X_train_image[0].dot(w)))
markers = ('o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan','orange','green','brown','lightblue','pink')
for l, c, m in zip(np.unique(y_train), colors, markers):
plt.scatter(X_train_pca[y_train==l, 0],
X_train_pca[y_train==l, 1],
c=c, label=l, marker=m)
plt.xlabel('PC 1')
plt.ylabel('PC 2')
plt.legend(loc='lower left')
plt.tight_layout()
title='features mapped to two principal components'
plt.title(title)
ocr_utils.show_figures(plt,title)
########################################################################################
pca = PCA(n_components=2)
X_train_pca = pca.fit_transform(X_train_image)
X_test_pca = pca.transform(X_test_image)
lr = LogisticRegression()
logistic_fitted =lr.fit(X_train_pca, y_train)
print('\nPCA Train Accuracy: {:4.6f}, n_components={}'.format(accuracy_score(y_train, logistic_fitted.predict(X_train_pca)),pca.n_components))
print('PCA Test Accuracy: {:4.6f}, n_components={}'.format(accuracy_score(y_test, logistic_fitted.predict(X_test_pca)),pca.n_components))
title = 'train pc1 versus pc2'
ocr_utils.plot_decision_regions(X=X_train_pca, y=y_train, classifier=lr, labels=['pc1','pc2'], title=title)
title = 'test pc1 versus pc2'
ocr_utils.plot_decision_regions(X=X_test_pca, y=y_test, classifier=lr, labels=['pc1','pc2'], title=title)
X_train_pca = pca.fit_transform(X_train_image)
X_test_pca = pca.transform(X_test_image)
########################################################################################
pca = PCA(n_components=n_components)
X_train_pca = pca.fit_transform(X_train_image)
X_test_pca = pca.transform(X_test_image)
lr = LogisticRegression()
logistic_fitted = lr.fit(X_train_pca, y_train)
y_train_pred = logistic_fitted.predict(X_train_pca)
y_test_pred = logistic_fitted.predict(X_test_pca)
print('\nPCA Train Accuracy: {:4.6f}, n_components={}'.format(accuracy_score(y_train, y_train_pred),pca.n_components))
print('PCA Test Accuracy: {:4.6f}, n_components={}'.format(accuracy_score(y_test, y_test_pred),pca.n_components))
X_errors_image = X_test_image[y_test!=y_test_pred]
y_errors = y_test[y_test!=y_test_pred]
X_errors_pca = X_test_pca[y_test!=y_test_pred]
X_orig = X_train_image[:500]
title = 'originals'
X2D=np.reshape(X_orig, (X_orig.shape[0], ds.train.num_rows, ds.train.num_columns))
ocr_utils.montage(X2D,title=title)
X_orig = X_train_pca[:500]
title = 'inverse original'
X_inverse = pca.inverse_transform(X_orig)
X2D = np.reshape(X_inverse, (X_inverse.shape[0], ds.train.num_rows, ds.train.num_columns))
X2D = X2D - np.min(X2D)
ocr_utils.montage(X2D,title=title)
# change to a 2D shape
X_errors2D=np.reshape(X_errors_image, (X_errors_image.shape[0], ds.train.num_rows, ds.train.num_columns))
ocr_utils.montage(X_errors2D,title='PCA Error Characters, components={}'.format (n_components))
title = 'inverse transform errors'
X_inverse = pca.inverse_transform(X_errors_pca)
X2D=np.reshape(X_inverse, (X_inverse.shape[0], ds.train.num_rows, ds.train.num_columns))
X2D = X2D - np.min(X2D)
ocr_utils.montage(X2D,title=title)
########################################################################################
kernel='rbf' # really slow
pca = KernelPCA(n_components=2,kernel=kernel, gamma=15)
X_train_pca = pca.fit_transform(X_train_image)
X_test_pca = pca.transform(X_test_image)
lr = LogisticRegression()
logistic_fitted=lr.fit(X_train_pca, y_train)
y_train_pred = logistic_fitted.predict(X_train_pca)
y_test_pred = logistic_fitted.predict(X_test_pca)
print('\nKernel PCA Train Accuracy: {:4.6f}, n_components={}, kernel={}'.format(accuracy_score(y_train, y_train_pred), pca.n_components,kernel))
print('Kernel PCA Test Accuracy: {:4.6f}, n_components={}, kernel={}'.format(accuracy_score(y_test, y_test_pred),pca.n_components,kernel))
title = 'train kernel {} pc1 versus pc2'.format(kernel)
ocr_utils.plot_decision_regions(X=X_train_pca, y=y_train, classifier=lr, labels=['pc1','pc2'], title=title)
title = 'test kernel {} pc1 versus pc2'.format(kernel)
ocr_utils.plot_decision_regions(X=X_test_pca, y=y_test, classifier=lr, labels=['pc1','pc2'], title=title)
########################################################################################
# too slow on my computer
# pca = KernelPCA(n_components=n_components,kernel=kernel, gamma = 15)
#
# X_train_pca = pca.fit_transform(X_train_image)
# X_test_pca = pca.transform(X_test_image)
#
# print ('n_components={}'.format(pca.n_components))
#
# lr = LogisticRegression()
# logistic_fitted = lr.fit(X_train_pca, y_train)
#
# y_pred = logistic_fitted.predict(X_test_pca)
# print('\nKKernelPCA Train Accuracy: {:4.6f}, n_components={}, kernel={}'.format(accuracy_score(y_train, logistic_fitted.predict(X_train_pca)), pca.n_components, kernel))
# print('KernelPCA Test Accuracy: {:4.6f}, n_components={}, kernel={}'.format(accuracy_score(y_test, y_pred), pca.n_components, kernel))
#
# X_errors_image = X_test_image[y_test!=y_pred]
# y_errors = y_test[y_test!=y_pred]
#
# error_images = X_errors_image.shape[0]
#
# # change to a 2D shape
# X_errors2D=np.reshape(X_errors_image, (error_images, ds.train.num_rows, ds.train.num_columns))
# ocr_utils.montage(X_errors2D,title='Kernel {} KernelPCA Errors Character,components={}s'.format(kernel,n_components))
print ('\n########################### No Errors ####################################')