-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathp190_confusion_matrix.py
57 lines (41 loc) · 1.71 KB
/
p190_confusion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
''' confusion_matrix.py
A confusion matrix shows a map of true positives, false positives, false
negatives, and true negatives for a decision.
Some decisions require a biased output where it we may want to reduce
the number of false positives, for instance. This is especially true
in medical diagnosis.
Created on Jul 8, 2016
from Python Machine Learning by Sebastian Raschka
@author: richard lyman
'''
import matplotlib.pyplot as plt
import ocr_utils
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
y_train, X_train, y_test, X_test, labels = ocr_utils.load_E13B(chars_to_train = (48,51) , test_size=0.3, columns=(9,17), random_state=0)
pipe_svc = Pipeline([('scl', StandardScaler()),
('clf', SVC(random_state=1))])
param_range = [0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0]
param_grid = [{'clf__C': param_range,
'clf__kernel': ['linear']},
{'clf__C': param_range,
'clf__gamma': param_range,
'clf__kernel': ['rbf']}]
pipe_svc.fit(X_train, y_train)
y_pred = pipe_svc.predict(X_test)
confmat = confusion_matrix(y_true=y_test, y_pred=y_pred)
print(confmat)
fig, ax = plt.subplots(figsize=(2.5, 2.5))
ax.matshow(confmat, cmap=plt.cm.Blues, alpha=0.3)
for i in range(confmat.shape[0]):
for j in range(confmat.shape[1]):
ax.text(x=j, y=i, s=confmat[i, j], va='center', ha='center')
plt.xlabel('predicted label')
plt.ylabel('true label')
title='c5_confusion_matrix'
plt.title(title)
plt.tight_layout()
ocr_utils.show_figures(plt,title)
print ('\n########################### No Errors ####################################')